Python LLM Inference Tools

View 119 business solutions

Browse free open source Python LLM Inference Tools and projects below. Use the toggles on the left to filter open source Python LLM Inference Tools by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • MongoDB 8.0 on Atlas | Run anywhere Icon
    MongoDB 8.0 on Atlas | Run anywhere

    Now available in even more cloud regions across AWS, Azure, and Google Cloud.

    MongoDB 8.0 brings enhanced performance and flexibility to Atlas—with expanded availability across 125+ regions globally. Build modern apps anywhere your users are, with the power of a modern database behind you.
    Learn More
  • 1
    API-for-Open-LLM

    API-for-Open-LLM

    Openai style api for open large language models

    API-for-Open-LLM is a lightweight API server designed for deploying and serving open large language models (LLMs), offering a simple way to integrate LLMs into applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    AutoGPTQ

    AutoGPTQ

    An easy-to-use LLMs quantization package with user-friendly apis

    AutoGPTQ is an implementation of GPTQ (Quantized GPT) that optimizes large language models (LLMs) for faster inference by reducing their computational footprint while maintaining accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Autodistill

    Autodistill

    Images to inference with no labeling

    Autodistill uses big, slower foundation models to train small, faster supervised models. Using autodistill, you can go from unlabeled images to inference on a custom model running at the edge with no human intervention in between. You can use Autodistill on your own hardware, or use the Roboflow hosted version of Autodistill to label images in the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    BudgetML

    BudgetML

    Deploy a ML inference service on a budget in 10 lines of code

    Deploy a ML inference service on a budget in less than 10 lines of code. BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end. We built BudgetML because it's hard to find a simple way to get a model in production fast and cheaply. Deploying from scratch involves learning too many different concepts like SSL certificate generation, Docker, REST, Uvicorn/Gunicorn, backend servers etc., that are simply not within the scope of a typical data scientist. BudgetML is our answer to this challenge. It is supposed to be fast, easy, and developer-friendly. It is by no means meant to be used in a full-fledged production-ready setup. It is simply a means to get a server up and running as fast as possible with the lowest costs possible.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Powering the best of the internet | Fastly Icon
    Powering the best of the internet | Fastly

    Fastly's edge cloud platform delivers faster, safer, and more scalable sites and apps to customers.

    Ensure your websites, applications and services can effortlessly handle the demands of your users with Fastly. Fastly’s portfolio is designed to be highly performant, personalized and secure while seamlessly scaling to support your growth.
    Try for free
  • 5
    Curated Transformers

    Curated Transformers

    PyTorch library of curated Transformer models and their components

    State-of-the-art transformers, brick by brick. Curated Transformers is a transformer library for PyTorch. It provides state-of-the-art models that are composed of a set of reusable components. Supports state-of-the-art transformer models, including LLMs such as Falcon, Llama, and Dolly v2. Implementing a feature or bugfix benefits all models. For example, all models support 4/8-bit inference through the bitsandbytes library and each model can use the PyTorch meta device to avoid unnecessary allocations and initialization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    DeepSpeed MII

    DeepSpeed MII

    MII makes low-latency and high-throughput inference possible

    MII makes low-latency and high-throughput inference possible, powered by DeepSpeed. The Deep Learning (DL) open-source community has seen tremendous growth in the last few months. Incredibly powerful text generation models such as the Bloom 176B, or image generation model such as Stable Diffusion are now available to anyone with access to a handful or even a single GPU through platforms such as Hugging Face. While open-sourcing has democratized access to AI capabilities, their application is still restricted by two critical factors: inference latency and cost. DeepSpeed-MII is a new open-source python library from DeepSpeed, aimed towards making low-latency, low-cost inference of powerful models not only feasible but also easily accessible. MII offers access to the highly optimized implementation of thousands of widely used DL models. MII-supported models achieve significantly lower latency and cost compared to their original implementation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal structures, root cause analysis, interventions and counterfactuals. DoWhy builds on two of the most powerful frameworks for causal inference: graphical causal models and potential outcomes. For effect estimation, it uses graph-based criteria and do-calculus for modeling assumptions and identifying a non-parametric causal effect. For estimation, it switches to methods based primarily on potential outcomes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    EconML

    EconML

    Python Package for ML-Based Heterogeneous Treatment Effects Estimation

    EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal of combining state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. One of the biggest promises of machine learning is to automate decision-making in a multitude of domains. At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) T on an outcome variable Y, controlling for a set of features X, W and how does that effect vary as a function of X.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    GPflow

    GPflow

    Gaussian processes in TensorFlow

    GPflow is a package for building Gaussian process models in Python. It implements modern Gaussian process inference for composable kernels and likelihoods. GPflow builds on TensorFlow 2.4+ and TensorFlow Probability for running computations, which allows fast execution on GPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Genv

    Genv

    GPU environment management and cluster orchestration

    Genv is an open-source environment and cluster management system for GPUs. Genv lets you easily control, configure, monitor and enforce the GPU resources that you are using in a GPU machine or cluster. It is intended to ease up the process of GPU allocation for data scientists without code changes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Hugging Face Transformer

    Hugging Face Transformer

    CPU/GPU inference server for Hugging Face transformer models

    Optimize and deploy in production Hugging Face Transformer models in a single command line. At Lefebvre Dalloz we run in-production semantic search engines in the legal domain, in the non-marketing language it's a re-ranker, and we based ours on Transformer. In that setup, latency is key to providing a good user experience, and relevancy inference is done online for hundreds of snippets per user query. Most tutorials on Transformer deployment in production are built over Pytorch and FastAPI. Both are great tools but not very performant in inference. Then, if you spend some time, you can build something over ONNX Runtime and Triton inference server. You will usually get from 2X to 4X faster inference compared to vanilla Pytorch. It's cool! However, if you want the best in class performances on GPU, there is only a single possible combination: Nvidia TensorRT and Triton. You will usually get 5X faster inference compared to vanilla Pytorch.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Infinity

    Infinity

    Low-latency REST API for serving text-embeddings

    Infinity is a high-throughput, low-latency REST API for serving vector embeddings, supporting all sentence-transformer models and frameworks. Infinity is developed under MIT License. Infinity powers inference behind Gradient.ai and other Embedding API providers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Intel Extension for Transformers

    Intel Extension for Transformers

    Build your chatbot within minutes on your favorite device

    Intel Extension for Transformers is an innovative toolkit designed to accelerate Transformer-based models on Intel platforms, including CPUs and GPUs. It offers state-of-the-art compression techniques for Large Language Models (LLMs) and provides tools to build chatbots within minutes on various devices. The extension aims to optimize the performance of Transformer-based models, making them more efficient and accessible.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    KServe

    KServe

    Standardized Serverless ML Inference Platform on Kubernetes

    KServe provides a Kubernetes Custom Resource Definition for serving machine learning (ML) models on arbitrary frameworks. It aims to solve production model serving use cases by providing performant, high abstraction interfaces for common ML frameworks like Tensorflow, XGBoost, ScikitLearn, PyTorch, and ONNX. It encapsulates the complexity of autoscaling, networking, health checking, and server configuration to bring cutting edge serving features like GPU Autoscaling, Scale to Zero, and Canary Rollouts to your ML deployments. It enables a simple, pluggable, and complete story for Production ML Serving including prediction, pre-processing, post-processing and explainability. KServe is being used across various organizations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    LLM Foundry

    LLM Foundry

    LLM training code for MosaicML foundation models

    Introducing MPT-7B, the first entry in our MosaicML Foundation Series. MPT-7B is a transformer trained from scratch on 1T tokens of text and code. It is open source, available for commercial use, and matches the quality of LLaMA-7B. MPT-7B was trained on the MosaicML platform in 9.5 days with zero human intervention at a cost of ~$200k. Large language models (LLMs) are changing the world, but for those outside well-resourced industry labs, it can be extremely difficult to train and deploy these models. This has led to a flurry of activity centered on open-source LLMs, such as the LLaMA series from Meta, the Pythia series from EleutherAI, the StableLM series from StabilityAI, and the OpenLLaMA model from Berkeley AI Research.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    LLMFlows

    LLMFlows

    LLMFlows - Simple, Explicit and Transparent LLM Apps

    LLMFlows is a framework for building simple, explicit, and transparent applications utilizing Large Language Models (LLMs). It emphasizes clarity and control in the development process, allowing developers to create LLM-powered applications with well-defined workflows and interactions. LLMFlows supports various LLMs and provides tools to manage prompts, responses, and application logic effectively.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Lepton AI

    Lepton AI

    A Pythonic framework to simplify AI service building

    A Pythonic framework to simplify AI service building. Cutting-edge AI inference and training, unmatched cloud-native experience, and top-tier GPU infrastructure. Ensure 99.9% uptime with comprehensive health checks and automatic repairs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Lightning Bolts

    Lightning Bolts

    Toolbox of models, callbacks, and datasets for AI/ML researchers

    Bolts package provides a variety of components to extend PyTorch Lightning, such as callbacks & datasets, for applied research and production. Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. We can introduce sparsity during fine-tuning with SparseML, which ultimately allows us to leverage the DeepSparse engine to see performance improvements at inference time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Llama Recipes

    Llama Recipes

    Scripts for fine-tuning Meta Llama3 with composable FSDP & PEFT method

    The 'llama-recipes' repository is a companion to the Meta Llama models. We support the latest version, Llama 3.1, in this repository. The goal is to provide a scalable library for fine-tuning Meta Llama models, along with some example scripts and notebooks to quickly get started with using the models in a variety of use-cases, including fine-tuning for domain adaptation and building LLM-based applications with Llama and other tools in the LLM ecosystem. The examples here showcase how to run Llama locally, in the cloud, and on-prem.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    LoRAX

    LoRAX

    Multi-LoRA inference server that scales to 1000s of fine-tuned LLMs

    Lorax is a multi-LoRA (Low-Rank Adaptation) inference server that scales to thousands of fine-tuned Large Language Models (LLMs). It enables efficient deployment and management of numerous fine-tuned models, facilitating scalable AI applications. Lorax is designed to handle high concurrency and provides a robust infrastructure for serving multiple LLMs simultaneously.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    MMTracking

    MMTracking

    OpenMMLab Video Perception Toolbox

    MMTracking is an open-source video perception toolbox by PyTorch. It is a part of OpenMMLab project. We are the first open-source toolbox that unifies versatile video perception tasks include video object detection, multiple object tracking, single object tracking and video instance segmentation. We decompose the video perception framework into different components and one can easily construct a customized method by combining different modules. MMTracking interacts with other OpenMMLab projects. It is built upon MMDetection that we can capitalize any detector only through modifying the configs. All operations run on GPUs. The training and inference speeds are faster than or comparable to other implementations. We reproduce state-of-the-art models and some of them even outperform the official implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Medusa

    Medusa

    Framework for Accelerating LLM Generation with Multiple Decoding Heads

    Medusa is a framework aimed at accelerating the generation capabilities of Large Language Models (LLMs) by employing multiple decoding heads. This approach allows for parallel processing during text generation, significantly enhancing throughput and reducing response times. Medusa is designed to be simple to implement and integrates with existing LLM infrastructures, making it a practical solution for scaling LLM applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Mistral Inference

    Mistral Inference

    Official inference library for Mistral models

    Open and portable generative AI for devs and businesses. We release open-weight models for everyone to customize and deploy where they want it. Our super-efficient model Mistral Nemo is available under Apache 2.0, while Mistral Large 2 is available through both a free non-commercial license, and a commercial license.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    OpenFieldAI - AI Open Field Test Tracker

    OpenFieldAI - AI Open Field Test Tracker

    OpenFieldAI is an AI based Open Field Test Rodent Tracker

    OpenFieldAI use AI-CNN to track rodents movement with pretrained OFAI models , or user could create their own model with YOLOv8 for inferencing. The software generates Centroid graph, Heat map and Line path and a spreadsheet containing all calculated parameters like - Speed - Time in and out of ROI - Distance - Entries/Exits for single/multiple pre-recorded videos or live webcam video. The ROI is assigned automatically in multiple video input , and can be manually given in single input. - For Queries/ Reporting Bugs, contact: kabeermuzammil614@gmail.com - Available on WIndows OS
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    OpenLLM

    OpenLLM

    Operating LLMs in production

    An open platform for operating large language models (LLMs) in production. Fine-tune, serve, deploy, and monitor any LLMs with ease. With OpenLLM, you can run inference with any open-source large-language models, deploy to the cloud or on-premises, and build powerful AI apps. Built-in supports a wide range of open-source LLMs and model runtime, including Llama 2, StableLM, Falcon, Dolly, Flan-T5, ChatGLM, StarCoder, and more. Serve LLMs over RESTful API or gRPC with one command, query via WebUI, CLI, our Python/Javascript client, or any HTTP client.
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.