Showing 100 open source projects for "python-ldap"

View related business solutions
  • Award-Winning Medical Office Software Designed for Your Specialty Icon
    Award-Winning Medical Office Software Designed for Your Specialty

    Succeed and scale your practice with cloud-based, data-backed, AI-powered healthcare software.

    RXNT is an ambulatory healthcare technology pioneer that empowers medical practices and healthcare organizations to succeed and scale through innovative, data-backed, AI-powered software.
    Learn More
  • Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution Icon
    Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution

    K-12 Schools, Higher Education, Businesses, Restaurants

    Rise Vision is the #1 digital signage company, offering easy-to-use cloud digital signage software compatible with any player across multiple screens. Forget about static displays. Save time and boost sales with 500+ customizable content templates for your screens. If you ever need help, get free training and exceptionally fast support.
    Learn More
  • 1
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference,...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 2
    ChatGLM.cpp

    ChatGLM.cpp

    C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4(V)

    ChatGLM.cpp is a C++ implementation of the ChatGLM-6B model, enabling efficient local inference without requiring a Python environment. It is optimized for running on consumer hardware.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    SuperDuperDB

    SuperDuperDB

    Integrate, train and manage any AI models and APIs with your database

    Build and manage AI applications easily without needing to move your data to complex pipelines and specialized vector databases. Integrate AI and vector search directly with your database including real-time inference and model training. Just using Python. A single scalable deployment of all your AI models and APIs which is automatically kept up-to-date as new data is processed immediately. No need to introduce an additional database and duplicate your data to use vector search and build on top of it. SuperDuperDB enables vector search in your existing database. Integrate and combine models from Sklearn, PyTorch, HuggingFace with AI APIs such as OpenAI to build even the most complex AI applications and workflows. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    OpenLLM

    OpenLLM

    Operating LLMs in production

    ...Built-in supports a wide range of open-source LLMs and model runtime, including Llama 2, StableLM, Falcon, Dolly, Flan-T5, ChatGLM, StarCoder, and more. Serve LLMs over RESTful API or gRPC with one command, query via WebUI, CLI, our Python/Javascript client, or any HTTP client.
    Downloads: 0 This Week
    Last Update:
    See Project
  • eProcurement Software Icon
    eProcurement Software

    Enterprises and companies seeking a solution to manage all their procurement operations and processes

    eBuyerAssist by Eyvo is a cloud-based procurement solution designed for businesses of all sizes and industries. Fully modular and scalable, it streamlines the entire procurement lifecycle—from requisition to fulfillment. The platform includes powerful tools for strategic sourcing, supplier management, warehouse operations, and contract oversight. Additional modules cover purchase orders, approval workflows, inventory and asset management, customer orders, budget control, cost accounting, invoice matching, vendor credit checks, and risk analysis. eBuyerAssist centralizes all procurement functions into a single, easy-to-use system—improving visibility, control, and efficiency across your organization. Whether you're aiming to reduce costs, enhance compliance, or align procurement with broader business goals, eBuyerAssist helps you get there faster, smarter, and with measurable results.
    Learn More
  • 5
    TorchRec

    TorchRec

    Pytorch domain library for recommendation systems

    TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale recommender systems (RecSys). It allows authors to train models with large embedding tables sharded across many GPUs. Parallelism primitives that enable easy authoring of large, performant multi-device/multi-node models using hybrid data-parallelism/model-parallelism. The TorchRec sharder can shard embedding tables with different sharding strategies including data-parallel,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Norfair

    Norfair

    Lightweight Python library for adding real-time multi-object tracking

    Norfair is a customizable lightweight Python library for real-time multi-object tracking. Using Norfair, you can add tracking capabilities to any detector with just a few lines of code. Any detector expressing its detections as a series of (x, y) coordinates can be used with Norfair. This includes detectors performing tasks such as object or keypoint detection. It can easily be inserted into complex video processing pipelines to add tracking to existing projects.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    ModelScope

    ModelScope

    Bring the notion of Model-as-a-Service to life

    ModelScope is built upon the notion of “Model-as-a-Service” (MaaS). It seeks to bring together most advanced machine learning models from the AI community, and streamlines the process of leveraging AI models in real-world applications. The core ModelScope library open-sourced in this repository provides the interfaces and implementations that allow developers to perform model inference, training and evaluation. In particular, with rich layers of API abstraction, the ModelScope library offers...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Mosec

    Mosec

    A high-performance ML model serving framework, offers dynamic batching

    Mosec is a high-performance and flexible model-serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and the efficient online service API.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Axe Credit Portal - ACP- is axefinance’s future-proof AI-driven solution to digitalize the loan process from KYC to servicing, available as a locally hosted or cloud-based software. Icon
    Axe Credit Portal - ACP- is axefinance’s future-proof AI-driven solution to digitalize the loan process from KYC to servicing, available as a locally hosted or cloud-based software.

    Banks, lending institutions

    Founded in 2004, axefinance is a global market-leading software provider focused on credit risk automation for lenders looking to provide an efficient, competitive, and seamless omnichannel financing journey for all client segments (FI, Retail, Commercial, and Corporate.)
    Learn More
  • 10
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    Towhee is an open-source machine-learning pipeline that helps you encode your unstructured data into embeddings. You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model inference, making your pipeline execution 10x faster. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    SparseML

    SparseML

    Libraries for applying sparsification recipes to neural networks

    SparseML is an optimization toolkit for training and deploying deep learning models using sparsification techniques like pruning and quantization to improve efficiency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    rwkv.cpp

    rwkv.cpp

    INT4/INT5/INT8 and FP16 inference on CPU for RWKV language model

    Besides the usual FP32, it supports FP16, quantized INT4, INT5 and INT8 inference. This project is focused on CPU, but cuBLAS is also supported. RWKV is a novel large language model architecture, with the largest model in the family having 14B parameters. In contrast to Transformer with O(n^2) attention, RWKV requires only state from the previous step to calculate logits. This makes RWKV very CPU-friendly on large context lengths.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    optillm

    optillm

    Optimizing inference proxy for LLMs

    OptiLLM is an optimizing inference proxy for Large Language Models (LLMs) that implements state-of-the-art techniques to enhance performance and efficiency. It serves as an OpenAI API-compatible proxy, allowing for seamless integration into existing workflows while optimizing inference processes. OptiLLM aims to reduce latency and resource consumption during LLM inference.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    LMDeploy

    LMDeploy

    LMDeploy is a toolkit for compressing, deploying, and serving LLMs

    LMDeploy is a toolkit designed for compressing, deploying, and serving large language models (LLMs). It offers tools and workflows to optimize LLMs for production environments, ensuring efficient performance and scalability. LMDeploy supports various model architectures and provides deployment solutions across different platforms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    NNCF

    NNCF

    Neural Network Compression Framework for enhanced OpenVINO

    NNCF (Neural Network Compression Framework) is an optimization toolkit for deep learning models, designed to apply quantization, pruning, and other techniques to improve inference efficiency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    API-for-Open-LLM

    API-for-Open-LLM

    Openai style api for open large language models

    API-for-Open-LLM is a lightweight API server designed for deploying and serving open large language models (LLMs), offering a simple way to integrate LLMs into applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DeepSparse

    DeepSparse

    Sparsity-aware deep learning inference runtime for CPUs

    A sparsity-aware enterprise inferencing system for AI models on CPUs. Maximize your CPU infrastructure with DeepSparse to run performant computer vision (CV), natural language processing (NLP), and large language models (LLMs).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Text Generation Inference

    Text Generation Inference

    Large Language Model Text Generation Inference

    Text Generation Inference is a high-performance inference server for text generation models, optimized for Hugging Face's Transformers. It is designed to serve large language models efficiently with optimizations for performance and scalability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Autodistill

    Autodistill

    Images to inference with no labeling

    Autodistill uses big, slower foundation models to train small, faster supervised models. Using autodistill, you can go from unlabeled images to inference on a custom model running at the edge with no human intervention in between. You can use Autodistill on your own hardware, or use the Roboflow hosted version of Autodistill to label images in the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    OpenVINO™ Training Extensions provide a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference. When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    TensorFlow Probability is a library for probabilistic reasoning and statistical analysis. TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU). It's for data scientists, statisticians, ML researchers, and practitioners who want to encode domain knowledge to understand data and make predictions. Since TFP inherits the benefits of TensorFlow, you can build, fit, and deploy a model using a single language throughout the lifecycle of model exploration and production. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Intel Extension for Transformers

    Intel Extension for Transformers

    Build your chatbot within minutes on your favorite device

    Intel Extension for Transformers is an innovative toolkit designed to accelerate Transformer-based models on Intel platforms, including CPUs and GPUs. It offers state-of-the-art compression techniques for Large Language Models (LLMs) and provides tools to build chatbots within minutes on various devices. The extension aims to optimize the performance of Transformer-based models, making them more efficient and accessible.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    LazyLLM

    LazyLLM

    Easiest and laziest way for building multi-agent LLMs applications

    LazyLLM is an optimized, lightweight LLM server designed for easy and fast deployment of large language models. It is fully compatible with the OpenAI API specification, enabling developers to integrate their own models into applications that normally rely on OpenAI’s endpoints. LazyLLM emphasizes low resource usage and fast inference while supporting multiple models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    SetFit

    SetFit

    Efficient few-shot learning with Sentence Transformers

    SetFit is an efficient and prompt-free framework for few-shot fine-tuning of Sentence Transformers. It achieves high accuracy with little labeled data - for instance, with only 8 labeled examples per class on the Customer Reviews sentiment dataset, SetFit is competitive with fine-tuning RoBERTa Large on the full training set of 3k examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    whisper-timestamped

    whisper-timestamped

    Multilingual Automatic Speech Recognition with word-level timestamps

    Multilingual Automatic Speech Recognition with word-level timestamps and confidence. Whisper is a set of multi-lingual, robust speech recognition models trained by OpenAI that achieve state-of-the-art results in many languages. Whisper models were trained to predict approximate timestamps on speech segments (most of the time with 1-second accuracy), but they cannot originally predict word timestamps. This repository proposes an implementation to predict word timestamps and provide a more...
    Downloads: 1 This Week
    Last Update:
    See Project