Showing 7 open source projects for "liblpsolve55.so"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    MNN

    MNN

    MNN is a blazing fast, lightweight deep learning framework

    ...MNN Workbench could be downloaded from MNN's homepage, which provides pretrained models, visualized training tools, and one-click deployment of models to devices. Android platform, core so size is about 400KB, OpenCL so is about 400KB, Vulkan so is about 400KB. Supports hybrid computing on multiple devices. Currently supports CPU and GPU.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 2
    RWKV Runner

    RWKV Runner

    A RWKV management and startup tool, full automation, only 8MB

    RWKV (pronounced as RwaKuv) is an RNN with GPT-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). So it's combining the best of RNN and transformer - great performance, fast inference, fast training, saves VRAM, "infinite" ctxlen, and free text embedding. Moreover it's 100% attention-free. Default configs has enabled custom CUDA kernel acceleration, which is much faster and consumes much less VRAM. If you encounter possible compatibility issues, go to the Configs page and turn off Use Custom CUDA kernel to Accelerate.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 3
    OnnxStream

    OnnxStream

    Lightweight inference library for ONNX files, written in C++

    ...Generally, major machine learning frameworks and libraries are focused on minimizing inference latency and/or maximizing throughput, all of which at the cost of RAM usage. So I decided to write a super small and hackable inference library specifically focused on minimizing memory consumption: OnnxStream. OnnxStream is based on the idea of decoupling the inference engine from the component responsible for providing the model weights, which is a class derived from WeightsProvider. A WeightsProvider specialization can implement any type of loading, caching, and prefetching of the model parameters.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 4
    UForm

    UForm

    Multi-Modal Neural Networks for Semantic Search, based on Mid-Fusion

    ...This type of models is well-suited for retrieval in large collections. The most famous example of such models is CLIP by OpenAI. Early-fusion models encode both modalities jointly so they can take into account fine-grained features. Usually, these models are used for re-ranking relatively small retrieval results. Mid-fusion models are the golden midpoint between the previous two types. Mid-fusion models consist of two parts – unimodal and multimodal.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    ...Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN frameworks. Please read getting_started for the basic usage of MMDeploy.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    spaGO

    spaGO

    Self-contained Machine Learning and Natural Language Processing lib

    ...A good place to start is by looking at the implementation of built-in neural models, such as the LSTM. Except for a few linear algebra operations written in assembly for optimal performance (a bit of copying from Gonum), it's straightforward Go code, so you don't have to worry.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    LLaMA.go

    LLaMA.go

    llama.go is like llama.cpp in pure Golang

    ...The code of the project is based on the legendary ggml.cpp framework of Georgi Gerganov written in C++ with the same attitude to performance and elegance. Both models store FP32 weights, so you'll needs at least 32Gb of RAM (not VRAM or GPU RAM) for LLaMA-7B. Double to 64Gb for LLaMA-13B.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next