Showing 150 open source projects for "java open source"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    RamaLama

    RamaLama

    Simplifies the local serving of AI models from any source

    RamaLama is an open-source developer tool that simplifies working with and serving AI models locally or in production by leveraging container technologies like Docker, Podman, and OCI registries, allowing AI inference workflows to be treated like standard container deployments. It abstracts away much of the complexity of configuring AI runtimes, dependencies, and hardware optimizations by detecting available GPUs (or falling back to CPU) and automatically pulling a container image pre-configured for the detected hardware environment. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    Lepton AI

    Lepton AI

    A Pythonic framework to simplify AI service building

    A Pythonic framework to simplify AI service building. Cutting-edge AI inference and training, unmatched cloud-native experience, and top-tier GPU infrastructure. Ensure 99.9% uptime with comprehensive health checks and automatic repairs.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    MNN

    MNN

    MNN is a blazing fast, lightweight deep learning framework

    MNN is a highly efficient and lightweight deep learning framework. It supports inference and training of deep learning models, and has industry leading performance for inference and training on-device. At present, MNN has been integrated in more than 20 apps of Alibaba Inc, such as Taobao, Tmall, Youku, Dingtalk, Xianyu and etc., covering more than 70 usage scenarios such as live broadcast, short video capture, search recommendation, product searching by image, interactive marketing, equity...
    Downloads: 13 This Week
    Last Update:
    See Project
  • 4
    ChatLLM.cpp

    ChatLLM.cpp

    Pure C++ implementation of several models for real-time chatting

    chatllm.cpp is a pure C++ implementation designed for real-time chatting with Large Language Models (LLMs) on personal computers, supporting both CPU and GPU executions. It enables users to run various LLMs ranging from less than 1 billion to over 300 billion parameters, facilitating responsive and efficient conversational AI experiences without relying on external servers.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative) are an amazing technology that will power many of future ML use cases. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    OpenLLM

    OpenLLM

    Operating LLMs in production

    An open platform for operating large language models (LLMs) in production. Fine-tune, serve, deploy, and monitor any LLMs with ease. With OpenLLM, you can run inference with any open-source large-language models, deploy to the cloud or on-premises, and build powerful AI apps. Built-in supports a wide range of open-source LLMs and model runtime, including Llama 2, StableLM, Falcon, Dolly, Flan-T5, ChatGLM, StarCoder, and more.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    DeepCamera

    DeepCamera

    Open-Source AI Camera. Empower any camera/CCTV

    DeepCamera empowers your traditional surveillance cameras and CCTV/NVR with machine learning technologies. It provides open-source facial recognition-based intrusion detection, fall detection, and parking lot monitoring with the inference engine on your local device. SharpAI-hub is the cloud hosting for AI applications that helps you deploy AI applications with your CCTV camera on your edge device in minutes. SharpAI yolov7_reid is an open-source Python application that leverages AI technologies to detect intruders with traditional surveillance cameras. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    rwkv.cpp

    rwkv.cpp

    INT4/INT5/INT8 and FP16 inference on CPU for RWKV language model

    Besides the usual FP32, it supports FP16, quantized INT4, INT5 and INT8 inference. This project is focused on CPU, but cuBLAS is also supported. RWKV is a novel large language model architecture, with the largest model in the family having 14B parameters. In contrast to Transformer with O(n^2) attention, RWKV requires only state from the previous step to calculate logits. This makes RWKV very CPU-friendly on large context lengths.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    Turing.jl

    Turing.jl

    Bayesian inference with probabilistic programming

    Bayesian inference with probabilistic programming.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Smart Business Texting that Generates Pipeline Icon
    Smart Business Texting that Generates Pipeline

    Create and convert pipeline at scale through industry leading SMS campaigns, automation, and conversation management.

    TextUs is the leading text messaging service provider for businesses that want to engage in real-time conversations with customers, leads, employees and candidates. Text messaging is one of the most engaging ways to communicate with customers, candidates, employees and leads. 1:1, two-way messaging encourages response and engagement. Text messages help teams get 10x the response rate over phone and email. Business text messaging has become a more viable form of communication than traditional mediums. The TextUs user experience is intentionally designed to resemble the familiar SMS inbox, allowing users to easily manage contacts, conversations, and campaigns. Work right from your desktop with the TextUs web app or use the Chrome extension alongside your ATS or CRM. Leverage the mobile app for on-the-go sending and responding.
    Learn More
  • 10
    Infinity

    Infinity

    Low-latency REST API for serving text-embeddings

    Infinity is a high-throughput, low-latency REST API for serving vector embeddings, supporting all sentence-transformer models and frameworks. Infinity is developed under MIT License. Infinity powers inference behind Gradient.ai and other Embedding API providers.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    Lean Copilot

    Lean Copilot

    LLMs as Copilots for Theorem Proving in Lean

    LeanCopilot integrates large language models (LLMs) as copilots for theorem proving in the Lean proof assistant. It assists users by suggesting tactics, premises, and searching for proofs, thereby enhancing the efficiency of formal verification processes. LeanCopilot supports both built-in models from LeanDojo and custom models, offering flexibility for various use cases.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Diffusers

    Diffusers

    State-of-the-art diffusion models for image and audio generation

    Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, Diffusers is a modular toolbox that supports both. Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions. State-of-the-art diffusion pipelines that can be run in inference with just a...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    TorchAudio

    TorchAudio

    Data manipulation and transformation for audio signal processing

    The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    OpenFold

    OpenFold

    Trainable, memory-efficient, and GPU-friendly PyTorch reproduction

    OpenFold carefully reproduces (almost) all of the features of the original open source inference code (v2.0.1). The sole exception is model ensembling, which fared poorly in DeepMind's own ablation testing and is being phased out in future DeepMind experiments. It is omitted here for the sake of reducing clutter. In cases where the Nature paper differs from the source, we always defer to the latter. OpenFold is trainable in full precision, half precision, or bfloat16 with or without DeepSpeed, and we've trained it from scratch, matching the performance of the original. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    KServe

    KServe

    Standardized Serverless ML Inference Platform on Kubernetes

    KServe provides a Kubernetes Custom Resource Definition for serving machine learning (ML) models on arbitrary frameworks. It aims to solve production model serving use cases by providing performant, high abstraction interfaces for common ML frameworks like Tensorflow, XGBoost, ScikitLearn, PyTorch, and ONNX. It encapsulates the complexity of autoscaling, networking, health checking, and server configuration to bring cutting edge serving features like GPU Autoscaling, Scale to Zero, and...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    ChatGLM.cpp

    ChatGLM.cpp

    C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4(V)

    ChatGLM.cpp is a C++ implementation of the ChatGLM-6B model, enabling efficient local inference without requiring a Python environment. It is optimized for running on consumer hardware.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provides a collection of highly optimized building blocks for loading and processing image, video and audio data. It can be used as a portable drop-in replacement for built-in data loaders and data iterators in popular deep learning frameworks. Deep learning applications require complex, multi-stage data processing pipelines that include loading, decoding,...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    PEFT

    PEFT

    State-of-the-art Parameter-Efficient Fine-Tuning

    Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's parameters. Fine-tuning large-scale PLMs is often prohibitively costly. In this regard, PEFT methods only fine-tune a small number of (extra) model parameters, thereby greatly decreasing the computational and storage costs. Recent State-of-the-Art PEFT techniques achieve performance comparable to that of full...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    ...Since TFP inherits the benefits of TensorFlow, you can build, fit, and deploy a model using a single language throughout the lifecycle of model exploration and production. TFP is open source and available on GitHub. Tools to build deep probabilistic models, including probabilistic layers and a `JointDistribution` abstraction. Variational inference and Markov chain Monte Carlo. A wide selection of probability distributions and bijectors. Optimizers such as Nelder-Mead, BFGS, and SGLD.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    GPflow

    GPflow

    Gaussian processes in TensorFlow

    GPflow is a package for building Gaussian process models in Python. It implements modern Gaussian process inference for composable kernels and likelihoods. GPflow builds on TensorFlow 2.4+ and TensorFlow Probability for running computations, which allows fast execution on GPUs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    SageMaker Python SDK

    SageMaker Python SDK

    Training and deploying machine learning models on Amazon SageMaker

    SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the SDK, you can train and deploy models using popular deep learning frameworks Apache MXNet and TensorFlow. You can also train and deploy models with Amazon algorithms, which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference,...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    EconML

    EconML

    Python Package for ML-Based Heterogeneous Treatment Effects Estimation

    EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal of combining state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. One of the biggest promises of machine learning is to automate decision-making in a multitude of domains. At the core of many data-driven...
    Downloads: 2 This Week
    Last Update:
    See Project