Showing 32 open source projects for "python data analysis"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Deliver secure remote access with OpenVPN. Icon
    Deliver secure remote access with OpenVPN.

    Trusted by nearly 20,000 customers worldwide, and all major cloud providers.

    OpenVPN's products provide scalable, secure remote access — giving complete freedom to your employees to work outside the office while securely accessing SaaS, the internet, and company resources.
    Get started — no credit card required.
  • 1
    DeepCamera

    DeepCamera

    Open-Source AI Camera. Empower any camera/CCTV

    DeepCamera empowers your traditional surveillance cameras and CCTV/NVR with machine learning technologies. It provides open-source facial recognition-based intrusion detection, fall detection, and parking lot monitoring with the inference engine on your local device. SharpAI-hub is the cloud hosting for AI applications that helps you deploy AI applications with your CCTV camera on your edge device in minutes. SharpAI yolov7_reid is an open-source Python application that leverages AI...
    Downloads: 13 This Week
    Last Update:
    See Project
  • 2
    Scanpy

    Scanpy

    Single-cell analysis in Python

    Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It includes preprocessing, visualization, clustering, trajectory inference and differential expression testing. The Python-based implementation efficiently deals with datasets of more than one million cells.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    Superduper

    Superduper

    Superduper: Integrate AI models and machine learning workflows

    Superduper is a Python-based framework for building end-2-end AI-data workflows and applications on your own data, integrating with major databases. It supports the latest technologies and techniques, including LLMs, vector-search, RAG, and multimodality as well as classical AI and ML paradigms. Developers may leverage Superduper by building compositional and declarative objects that out-source the details of deployment, orchestration versioning, and more to the Superduper engine. This allows...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Powering the best of the internet | Fastly Icon
    Powering the best of the internet | Fastly

    Fastly's edge cloud platform delivers faster, safer, and more scalable sites and apps to customers.

    Ensure your websites, applications and services can effortlessly handle the demands of your users with Fastly. Fastly’s portfolio is designed to be highly performant, personalized and secure while seamlessly scaling to support your growth.
    Try for free
  • 5
    SuperDuperDB

    SuperDuperDB

    Integrate, train and manage any AI models and APIs with your database

    Build and manage AI applications easily without needing to move your data to complex pipelines and specialized vector databases. Integrate AI and vector search directly with your database including real-time inference and model training. Just using Python. A single scalable deployment of all your AI models and APIs which is automatically kept up-to-date as new data is processed immediately. No need to introduce an additional database and duplicate your data to use vector search and build on top...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    Pandas Profiling

    Pandas Profiling

    Create HTML profiling reports from pandas DataFrame objects

    pandas-profiling generates profile reports from a pandas DataFrame. The pandas df.describe() function is handy yet a little basic for exploratory data analysis. pandas-profiling extends pandas DataFrame with df.profile_report(), which automatically generates a standardized univariate and multivariate report for data understanding. High correlation warnings, based on different correlation metrics (Spearman, Pearson, Kendall, Cramér’s V, Phik). Most common categories (uppercase, lowercase...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Triton Inference Server

    Triton Inference Server

    The Triton Inference Server provides an optimized cloud

    Triton Inference Server is an open-source inference serving software that streamlines AI inferencing. Triton enables teams to deploy any AI model from multiple deep learning and machine learning frameworks, including TensorRT, TensorFlow, PyTorch, ONNX, OpenVINO, Python, RAPIDS FIL, and more. Triton supports inference across cloud, data center, edge, and embedded devices on NVIDIA GPUs, x86 and ARM CPU, or AWS Inferentia. Triton delivers optimized performance for many query types, including...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    Ray

    Ray

    A unified framework for scalable computing

    ... model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    EconML

    EconML

    Python Package for ML-Based Heterogeneous Treatment Effects Estimation

    EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal of combining state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. One of the biggest promises of machine learning is to automate decision-making in a multitude of domains. At the core of many data-driven...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Build apps or websites quickly on a fully managed platform Icon
    Build apps or websites quickly on a fully managed platform

    Get two million requests free per month.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure.
    Try it for free
  • 10
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    TensorFlow Probability is a library for probabilistic reasoning and statistical analysis. TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU). It's for data scientists, statisticians, ML researchers, and practitioners who want to encode domain knowledge to understand data and make predictions. Since TFP inherits the benefits of TensorFlow, you can build, fit, and deploy a model...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Xorbits Inference

    Xorbits Inference

    Replace OpenAI GPT with another LLM in your app

    ..., you can effortlessly deploy and serve your or state-of-the-art built-in models using just a single command. Whether you are a researcher, developer, or data scientist, Xorbits Inference empowers you to unleash the full potential of cutting-edge AI models.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Adversarial Robustness Toolbox

    Adversarial Robustness Toolbox

    Adversarial Robustness Toolbox (ART) - Python Library for ML security

    Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to evaluate, defend, certify and verify Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, sci-kit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    A lightweight vision library for performing large-scale object detection & instance segmentation. Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems with many vision utilities. Detection of small objects and objects far away in the scene is a major...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Causal ML

    Causal ML

    Uplift modeling and causal inference with machine learning algorithms

    Causal ML is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research [1]. It provides a standard interface that allows users to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from experimental or observational data. Essentially, it estimates the causal impact of intervention T on outcome Y for users with observed features X, without strong assumptions...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    Serve machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code. A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Oumi

    Oumi

    Everything you need to build state-of-the-art foundation models

    Oumi is an open-source framework that provides everything needed to build state-of-the-art foundation models, end-to-end. It aims to simplify the development of large-scale machine-learning models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    marqo

    marqo

    Tensor search for humans

    ... and text-to-image search and analytics. Marqo adapts and stores your data in a fully schemaless manner. It combines tensor search with a query DSL that provides efficient pre-filtering. Tensor search allows you to go beyond keyword matching and search based on the meaning of text, images and other unstructured data. Be a part of the tribe and help us revolutionize the future of search. Whether you are a contributor, a user, or simply have questions about Marqo, we got your back.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    OpenFold

    OpenFold

    Trainable, memory-efficient, and GPU-friendly PyTorch reproduction

    ..., and we've trained it from scratch, matching the performance of the original. We've publicly released model weights and our training data — some 400,000 MSAs and PDB70 template hit files — under a permissive license. Model weights are available via scripts in this repository while the MSAs are hosted by the Registry of Open Data on AWS (RODA).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    Towhee is an open-source machine-learning pipeline that helps you encode your unstructured data into embeddings. You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provides a collection of highly optimized building blocks for loading and processing image, video and audio data. It can be used as a portable drop-in replacement for built-in data loaders and data iterators in popular deep learning frameworks. Deep learning applications require complex, multi-stage data processing pipelines that include loading, decoding...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    SetFit

    SetFit

    Efficient few-shot learning with Sentence Transformers

    SetFit is an efficient and prompt-free framework for few-shot fine-tuning of Sentence Transformers. It achieves high accuracy with little labeled data - for instance, with only 8 labeled examples per class on the Customer Reviews sentiment dataset, SetFit is competitive with fine-tuning RoBERTa Large on the full training set of 3k examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    TorchAudio

    TorchAudio

    Data manipulation and transformation for audio signal processing

    The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    TorchRec

    TorchRec

    Pytorch domain library for recommendation systems

    TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale recommender systems (RecSys). It allows authors to train models with large embedding tables sharded across many GPUs. Parallelism primitives that enable easy authoring of large, performant multi-device/multi-node models using hybrid data-parallelism/model-parallelism. The TorchRec sharder can shard embedding tables with different sharding strategies including data-parallel...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Llama Recipes

    Llama Recipes

    Scripts for fine-tuning Meta Llama3 with composable FSDP & PEFT method

    The 'llama-recipes' repository is a companion to the Meta Llama models. We support the latest version, Llama 3.1, in this repository. The goal is to provide a scalable library for fine-tuning Meta Llama models, along with some example scripts and notebooks to quickly get started with using the models in a variety of use-cases, including fine-tuning for domain adaptation and building LLM-based applications with Llama and other tools in the LLM ecosystem. The examples here showcase how to run...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.