Showing 41 open source projects for "data"

View related business solutions
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • 1
    Pandas Profiling

    Pandas Profiling

    Create HTML profiling reports from pandas DataFrame objects

    pandas-profiling generates profile reports from a pandas DataFrame. The pandas df.describe() function is handy yet a little basic for exploratory data analysis. pandas-profiling extends pandas DataFrame with df.profile_report(), which automatically generates a standardized univariate and multivariate report for data understanding. High correlation warnings, based on different correlation metrics (Spearman, Pearson, Kendall, Cramér’s V, Phik). Most common categories (uppercase, lowercase, separator), scripts (Latin, Cyrillic) and blocks (ASCII, Cyrilic). ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative) are an amazing technology that will power many of future ML use cases. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provides a collection of highly optimized building blocks for loading and processing image, video and audio data. It can be used as a portable drop-in replacement for built-in data loaders and data iterators in popular deep learning frameworks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Superduper

    Superduper

    Superduper: Integrate AI models and machine learning workflows

    ...This allows developers to completely avoid implementing MLOps, ETL pipelines, model deployment, data migration, and synchronization. Using Superduper is simply "CAPE": Connect to your data, apply arbitrary AI to that data, package and reuse the application on arbitrary data, and execute AI-database queries and predictions on the resulting AI outputs and data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • 5
    SuperDuperDB

    SuperDuperDB

    Integrate, train and manage any AI models and APIs with your database

    Build and manage AI applications easily without needing to move your data to complex pipelines and specialized vector databases. Integrate AI and vector search directly with your database including real-time inference and model training. Just using Python. A single scalable deployment of all your AI models and APIs which is automatically kept up-to-date as new data is processed immediately. No need to introduce an additional database and duplicate your data to use vector search and build on top of it. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    ...While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications of image tagging, object detection, segmentation, OCR, Audio, Video, Text classification, CSV for tabular data and time series. Neural network templates for the most effective architectures for GPU, CPU, and Embedded devices. Training in a few hours and with small data thanks to 25+ pre-trained models. Full Open Source, with an ecosystem of tools (API clients, video, annotation, ...) Fast Server written in pure C++, a single codebase for Cloud, Desktop & Embedded.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    LocalAI

    LocalAI

    Self-hosted, community-driven, local OpenAI compatible API

    Self-hosted, community-driven, local OpenAI compatible API. Drop-in replacement for OpenAI running LLMs on consumer-grade hardware. Free Open Source OpenAI alternative. No GPU is required. Runs ggml, GPTQ, onnx, TF compatible models: llama, gpt4all, rwkv, whisper, vicuna, koala, gpt4all-j, cerebras, falcon, dolly, starcoder, and many others. LocalAI is a drop-in replacement REST API that’s compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs (and not...
    Downloads: 20 This Week
    Last Update:
    See Project
  • 8
    Oumi

    Oumi

    Everything you need to build state-of-the-art foundation models

    Oumi is an open-source framework that provides everything needed to build state-of-the-art foundation models, end-to-end. It aims to simplify the development of large-scale machine-learning models.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 9
    OpenMLDB

    OpenMLDB

    OpenMLDB is an open-source machine learning database

    ...However, a feature engineering script developed by data scientists (Python scripts in most cases) cannot be directly deployed into production for online inference because it usually cannot meet the engineering requirements, such as low latency, high throughput and high availability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    EconML

    EconML

    Python Package for ML-Based Heterogeneous Treatment Effects Estimation

    EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal of combining state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. One of the biggest promises of machine learning is to automate decision-making in a multitude of domains.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    ...TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers, embedded, or automotive product platforms. TensorRT is built on CUDA®, NVIDIA’s parallel programming model, and enables you to optimize inference leveraging libraries, development tools, and technologies in CUDA-X™ for artificial intelligence, autonomous machines, high-performance computing, and graphics. With new NVIDIA Ampere Architecture GPUs, TensorRT also leverages sparse tensor cores providing an additional performance boost.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 12
    Embedding Studio

    Embedding Studio

    Framework which allows you transform your Vector Database

    Embedding Studio is a framework that transforms vector databases into feature-rich search engines. It leverages embeddings to enhance search capabilities, enabling more accurate and context-aware retrieval of information. Embedding Studio supports various data types and integrates seamlessly with existing databases, providing tools for fine-tuning and optimizing embeddings to suit specific application needs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    SetFit

    SetFit

    Efficient few-shot learning with Sentence Transformers

    SetFit is an efficient and prompt-free framework for few-shot fine-tuning of Sentence Transformers. It achieves high accuracy with little labeled data - for instance, with only 8 labeled examples per class on the Customer Reviews sentiment dataset, SetFit is competitive with fine-tuning RoBERTa Large on the full training set of 3k examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Scanpy

    Scanpy

    Single-cell analysis in Python

    Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It includes preprocessing, visualization, clustering, trajectory inference and differential expression testing. The Python-based implementation efficiently deals with datasets of more than one million cells.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    marqo

    marqo

    Tensor search for humans

    ...Marqo helps you configure deep-learning models like CLIP to pull semantic meaning from images. It can seamlessly handle image-to-image, image-to-text and text-to-image search and analytics. Marqo adapts and stores your data in a fully schemaless manner. It combines tensor search with a query DSL that provides efficient pre-filtering. Tensor search allows you to go beyond keyword matching and search based on the meaning of text, images and other unstructured data. Be a part of the tribe and help us revolutionize the future of search. Whether you are a contributor, a user, or simply have questions about Marqo, we got your back.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    TorchAudio

    TorchAudio

    Data manipulation and transformation for audio signal processing

    The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DeepCamera

    DeepCamera

    Open-Source AI Camera. Empower any camera/CCTV

    ...The source code is here It leverages Yolov7 as a person detector, FastReID for person feature extraction, Milvus the local vector database for self-supervised learning to identify unseen persons, Labelstudio to host images locally and for further usage such as label data and train your own classifier. It also integrates with Home-Assistant to empower smart homes with AI technology.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 18
    Featureform

    Featureform

    Turn your existing data infrastructure into a feature store

    Featureform allows data scientists to define, manage, and serve machine learning features across your organization. The days of untitled_128.ipynb are over. Transformations, features, and training sets can be pushed from notebooks to a centralized feature repository with metadata like name, variant, lineage, and owner. Featureform's Virtual Feature Store architecture orchestrates your data infrastructure to build and maintain your training sets and production features. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Causal ML

    Causal ML

    Uplift modeling and causal inference with machine learning algorithms

    ...CATE identifies these customers by estimating the effect of the KPI from ad exposure at the individual level from A/B experiments or historical observational data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    ONNX

    ONNX

    Open standard for machine learning interoperability

    ...ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring). ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    OpenFold

    OpenFold

    Trainable, memory-efficient, and GPU-friendly PyTorch reproduction

    ...OpenFold is trainable in full precision, half precision, or bfloat16 with or without DeepSpeed, and we've trained it from scratch, matching the performance of the original. We've publicly released model weights and our training data — some 400,000 MSAs and PDB70 template hit files — under a permissive license. Model weights are available via scripts in this repository while the MSAs are hosted by the Registry of Open Data on AWS (RODA).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    ...TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU). It's for data scientists, statisticians, ML researchers, and practitioners who want to encode domain knowledge to understand data and make predictions. Since TFP inherits the benefits of TensorFlow, you can build, fit, and deploy a model using a single language throughout the lifecycle of model exploration and production. TFP is open source and available on GitHub. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    TorchRec

    TorchRec

    Pytorch domain library for recommendation systems

    ...It allows authors to train models with large embedding tables sharded across many GPUs. Parallelism primitives that enable easy authoring of large, performant multi-device/multi-node models using hybrid data-parallelism/model-parallelism. The TorchRec sharder can shard embedding tables with different sharding strategies including data-parallel, table-wise, row-wise, table-wise-row-wise, and column-wise sharding. The TorchRec planner can automatically generate optimized sharding plans for models. Pipelined training overlaps dataloading device transfer (copy to GPU), inter-device communications (input_dist), and computation (forward, backward) for increased performance. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Triton Inference Server

    Triton Inference Server

    The Triton Inference Server provides an optimized cloud

    ...Triton enables teams to deploy any AI model from multiple deep learning and machine learning frameworks, including TensorRT, TensorFlow, PyTorch, ONNX, OpenVINO, Python, RAPIDS FIL, and more. Triton supports inference across cloud, data center, edge, and embedded devices on NVIDIA GPUs, x86 and ARM CPU, or AWS Inferentia. Triton delivers optimized performance for many query types, including real-time, batched, ensembles, and audio/video streaming. Provides Backend API that allows adding custom backends and pre/post-processing operations. Model pipelines using Ensembling or Business Logic Scripting (BLS). ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    LLM.swift

    LLM.swift

    LLM.swift is a simple and readable library

    LLM.swift is a Swift package that enables developers to run Large Language Models (LLMs) directly on Apple devices, including iOS, macOS, and watchOS. By leveraging Apple's hardware and software optimizations, LLM.swift facilitates on-device natural language processing tasks, ensuring user privacy and reducing latency associated with cloud-based solutions.​
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next
MongoDB Logo MongoDB