Showing 246 open source projects for "tensorflow"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 1
    ONNX Runtime

    ONNX Runtime

    ONNX Runtime: cross-platform, high performance ML inferencing

    ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences and lower costs, supporting models from deep learning frameworks such as PyTorch and TensorFlow/Keras as well as classical machine learning libraries such as scikit-learn, LightGBM, XGBoost, etc. ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators where applicable alongside graph optimizations and transforms. ONNX Runtime training can accelerate the model training time on multi-node NVIDIA GPUs for transformer models with a one-line addition for existing PyTorch training scripts. ...
    Downloads: 44 This Week
    Last Update:
    See Project
  • 2
    AmpliGraph

    AmpliGraph

    Python library for Representation Learning on Knowledge Graphs

    Open source library based on TensorFlow that predicts links between concepts in a knowledge graph. AmpliGraph is a suite of neural machine learning models for relational Learning, a branch of machine learning that deals with supervised learning on knowledge graphs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    NNCF

    NNCF

    Neural Network Compression Framework for enhanced OpenVINO

    NNCF (Neural Network Compression Framework) is an optimization toolkit for deep learning models, designed to apply quantization, pruning, and other techniques to improve inference efficiency.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Xfl

    Xfl

    An Efficient and Easy-to-use Federated Learning Framework

    XFL is a lightweight, high-performance federated learning framework supporting both horizontal and vertical FL. It integrates homomorphic encryption, DP, secure MPC, and optimizes network resilience. Compatible with major ML libraries and deployable via Docker or Conda.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Wikipedia2Vec

    Wikipedia2Vec

    A tool for learning vector representations of words and entities

    Wikipedia2Vec is an embedding learning tool that creates word and entity vector representations from Wikipedia, enabling NLP models to leverage structured and contextual knowledge.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    SparseML

    SparseML

    Libraries for applying sparsification recipes to neural networks

    SparseML is an optimization toolkit for training and deploying deep learning models using sparsification techniques like pruning and quantization to improve efficiency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Ludwig

    Ludwig

    A codeless platform to train and test deep learning models

    Ludwig is a toolbox built on top of TensorFlow that allows to train and test deep learning models without the need to write code. All you need to provide is a CSV file containing your data, a list of columns to use as inputs, and a list of columns to use as outputs, Ludwig will do the rest. Simple commands can be used to train models both locally and in a distributed way, and to use them to predict on new data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    ...Many components can be extended and overridden to build new state-of-the-art systems. Different machine learning frameworks have different strengths. Flower can be used with any machine learning framework, for example, PyTorch, TensorFlow, Hugging Face Transformers, PyTorch Lightning, scikit-learn, JAX, TFLite, MONAI, fastai, MLX, XGBoost, Pandas for federated analytics, or even raw NumPy for users who enjoy computing gradients by hand.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 9
    Zerox OCR

    Zerox OCR

    PDF to Markdown with vision models

    A dead simple way of OCR-ing a document for AI ingestion. Documents are meant to be a visual representation after all. With weird layouts, tables, charts, etc. The vision models just make sense. ZeroX is an open-source machine learning framework designed for fast experimentation and production deployment, optimized for speed and ease of use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 10
    Advanced Solutions Lab

    Advanced Solutions Lab

    This repos contains notebooks for the Advanced Solutions Lab

    This repository contains Jupyter notebooks meant to be run on Vertex AI. This is maintained by Google Cloud’s Advanced Solutions Lab (ASL) team. Vertex AI is the next-generation AI Platform on the Google Cloud Platform. The material covered in this repo will take a software engineer with no exposure to machine learning to an advanced level.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Scio

    Scio

    A Scala API for Apache Beam and Google Cloud Dataflow

    ...Inspired by Spark and Scalding, it provides scalable, type‑safe, and production-grade data processing, with built-in support for BigQuery, Pub/Sub, Cassandra, Elasticsearch, Redis, TensorFlow IO, and more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    mlx

    mlx

    MLX: An array framework for Apple silicon

    ...It supports searching by tags or tasks, visualization of model metadata, quick inference demos, automatic setup of runtime environments, and works with PyTorch, TensorFlow, and ONNX. Ideal for researchers exploring and testing models via browser.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    SageMaker Python SDK

    SageMaker Python SDK

    Training and deploying machine learning models on Amazon SageMaker

    SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the SDK, you can train and deploy models using popular deep learning frameworks Apache MXNet and TensorFlow. You can also train and deploy models with Amazon algorithms, which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training. If you have your own algorithms built into SageMaker-compatible Docker containers, you can train and host models using these as well.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    HanLP

    HanLP

    Han Language Processing

    HanLP is a multilingual Natural Language Processing (NLP) library composed of a series of models and algorithms. Built on TensorFlow 2.0, it was designed to advance state-of-the-art deep learning techniques and popularize the application of natural language processing in both academia and industry. HanLP is capable of lexical analysis (Chinese word segmentation, part-of-speech tagging, named entity recognition), syntax analysis, text classification, and sentiment analysis.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    MLflow

    MLflow

    Open source platform for the machine learning lifecycle

    MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    Learning Interpretability Tool

    Learning Interpretability Tool

    Interactively analyze ML models to understand their behavior

    The Learning Interpretability Tool (LIT, formerly known as the Language Interpretability Tool) is a visual, interactive ML model-understanding tool that supports text, image, and tabular data. It can be run as a standalone server, or inside of notebook environments such as Colab, Jupyter, and Google Cloud Vertex AI notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Denoising Diffusion Probabilistic Model

    Denoising Diffusion Probabilistic Model

    Implementation of Denoising Diffusion Probabilistic Model in Pytorch

    Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to generative modeling that may have the potential to rival GANs. It uses denoising score matching to estimate the gradient of the data distribution, followed by Langevin sampling to sample from the true distribution. If you simply want to pass in a folder name and the desired image dimensions, you can use the Trainer class to easily train a model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Stock prediction deep neural learning

    Stock prediction deep neural learning

    Predicting stock prices using a TensorFlow LSTM

    Predicting stock prices can be a challenging task as it often does not follow any specific pattern. However, deep neural learning can be used to identify patterns through machine learning. One of the most effective techniques for series forecasting is using LSTM (long short-term memory) networks, which are a type of recurrent neural network (RNN) capable of remembering information over a long period of time. This makes them extremely useful for predicting stock prices. Predicting stock...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference workloads to scale separately from the serving logic. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Adversarial Robustness Toolbox

    Adversarial Robustness Toolbox

    Adversarial Robustness Toolbox (ART) - Python Library for ML security

    ...ART provides tools that enable developers and researchers to evaluate, defend, certify and verify Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, sci-kit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, generation, certification, etc.).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Botonic

    Botonic

    Build chatbots and conversational experiences using React

    Botonic is a full-stack Javascript framework to create chatbots and modern conversational apps that work on multiple platforms, web, mobile and messaging apps (Messenger, Whatsapp, Telegram, etc). Building modern applications on top of messaging apps like Whatsapp or Messenger is much more than creating simple text-based chatbots. Botonic is a full-stack serverless framework that combines the power of React and Tensorflow.js to create amazing experiences at the intersection of text and...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    Tree

    Tree

    tree is a library for working with nested data structures

    Tree (dm-tree) is a lightweight Python library developed by Google DeepMind for manipulating nested data structures (also called pytrees). It generalizes Python’s built-in map function to operate over arbitrarily nested collections — including lists, tuples, dicts, and custom container types — while preserving their structure. This makes it particularly useful in machine learning pipelines and JAX-based workflows, where complex parameter trees or hierarchical state representations are...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Katib

    Katib

    Automated Machine Learning on Kubernetes

    ...Katib is a project that is agnostic to machine learning (ML) frameworks. It can tune hyperparameters of applications written in any language of the users’ choice and natively supports many ML frameworks, such as TensorFlow, Apache MXNet, PyTorch, XGBoost, and others. Katib can perform training jobs using any Kubernetes Custom Resources with out-of-the-box support for Kubeflow Training Operator, Argo Workflows, Tekton Pipelines, and many more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Koordinator

    Koordinator

    A QoS-based scheduling system brings optimal layout and status to work

    ...Koordinator provides a range of options for customizing scheduling policies, allowing users to fine-tune the behavior of the system to suit their specific needs, such as Web Service, Spark, Presto, TensorFlow, Pytorch, etc. We provide a profile tool to help you manage workload scheduling policies, which allows to control scheduling policies without modifying the existing workload controller.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    AWESOME DATA SCIENCE

    AWESOME DATA SCIENCE

    Awesome Data Science repository to learn and apply for real world

    An open source Data Science repository to learn and apply towards solving real world problems. This is a shortcut path to start studying Data Science. Just follow the steps to answer the questions, "What is Data Science and what should I study to learn Data Science?" Data Science is one of the hottest topics on the Computer and Internet farmland nowadays. People have gathered data from applications and systems until today and now is the time to analyze them. The next steps are producing...
    Downloads: 0 This Week
    Last Update:
    See Project