Showing 244 open source projects for "tensorflow"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    TensorFlow

    TensorFlow

    TensorFlow is an open source library for machine learning

    Tensorflow can also be used for research and production with TensorFlow Extended.
    Downloads: 20 This Week
    Last Update:
    See Project
  • 2
    SageMaker TensorFlow

    SageMaker TensorFlow

    SageMaker specific extensions to TensorFlow

    This package contains SageMaker-specific extensions to TensorFlow, including the PipeModeDataset class, that allows SageMaker Pipe Mode channels to be read using TensorFlow Datasets. This package supports Python 3.7-3.9 and TensorFlow versions 1.7 and higher, including 2.0-2.9.1. For TensorFlow 1.x support, see the master branch. sagemaker-tensorflow releases for all supported versions are available on PyPI.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    TensorFlow Privacy

    TensorFlow Privacy

    Library for training machine learning models with privacy for data

    Library for training machine learning models with privacy for training data. This repository contains the source code for TensorFlow Privacy, a Python library that includes implementations of TensorFlow optimizers for training machine learning models with differential privacy. The library comes with tutorials and analysis tools for computing the privacy guarantees provided.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    TensorFlow Datasets

    TensorFlow Datasets

    TFDS is a collection of datasets ready to use with TensorFlow,

    TensorFlow Datasets is a collection of datasets ready to use, with TensorFlow or other Python ML frameworks, such as Jax. All datasets are exposed as tf.data. Datasets , enabling easy-to-use and high-performance input pipelines. To get started see the guide and our list of datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    TensorFlow Probability is a library for probabilistic reasoning and statistical analysis. TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU). It's for data scientists, statisticians, ML researchers, and practitioners who want to encode domain knowledge to understand data and make predictions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    TensorFlow Serving

    TensorFlow Serving

    Serving system for machine learning models

    ...In order to serve a Tensorflow model, simply export a SavedModel from your Tensorflow program. SavedModel is a language-neutral, recoverable, hermetic serialization format that enables higher-level systems and tools to produce, consume, and transform TensorFlow models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    TensorFlow Addons

    TensorFlow Addons

    Useful extra functionality for TensorFlow 2.x maintained by SIG-addons

    TensorFlow Addons is a repository of contributions that conform to well-established API patterns but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast-moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    TensorFlow.js

    TensorFlow.js

    TensorFlow.js is a library for machine learning in JavaScript

    TensorFlow.js is a library for machine learning in JavaScript. Develop ML models in JavaScript, and use ML directly in the browser or in Node.js. Use off-the-shelf JavaScript models or convert Python TensorFlow models to run in the browser or under Node.js. Retrain pre-existing ML models using your own data. Build and train models directly in JavaScript using flexible and intuitive APIs. Tensors are the core datastructure of TensorFlow.js They are a generalization of vectors and matrices to potentially higher dimensions. Built on top of TensorFlow.js, the ml5.js library provides access to machine learning algorithms and models in the browser with a concise, approachable API. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 9
    TensorFlow Model Garden

    TensorFlow Model Garden

    Models and examples built with TensorFlow

    The TensorFlow Model Garden is a repository with a number of different implementations of state-of-the-art (SOTA) models and modeling solutions for TensorFlow users. We aim to demonstrate the best practices for modeling so that TensorFlow users can take full advantage of TensorFlow for their research and product development. To improve the transparency and reproducibility of our models, training logs on TensorBoard.dev are also provided for models to the extent possible though not all models are suitable. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Junie, the AI coding agent by JetBrains Icon
    Junie, the AI coding agent by JetBrains

    Your smart coding agent

    Junie is an AI-powered coding agent developed by JetBrains designed to enhance developer productivity by integrating directly into popular IDEs such as IntelliJ IDEA, PyCharm, and Android Studio. It supports developers by assisting with code completion, testing, and inspections, ensuring code quality and reducing debugging time.
    Learn More
  • 10
    SageMaker TensorFlow Training Toolkit

    SageMaker TensorFlow Training Toolkit

    Toolkit for running TensorFlow training scripts on SageMaker

    Toolkit for running TensorFlow training scripts on SageMaker. SageMaker TensorFlow Training Toolkit is an open-source library for using TensorFlow to train models on Amazon SageMaker. To use your TensorFlow Serving model on SageMaker, you first need to create a SageMaker Model. After creating a SageMaker Model, you can use it to create SageMaker Batch Transform Jobs for offline inference, or create SageMaker Endpoints for real-time inference.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    GPflow

    GPflow

    Gaussian processes in TensorFlow

    GPflow is a package for building Gaussian process models in Python. It implements modern Gaussian process inference for composable kernels and likelihoods. GPflow builds on TensorFlow 2.4+ and TensorFlow Probability for running computations, which allows fast execution on GPUs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    TensorFlow Model Optimization Toolkit

    TensorFlow Model Optimization Toolkit

    A toolkit to optimize ML models for deployment for Keras & TensorFlow

    ...Choose the model and optimization tool depending on your task. In many cases, pre-optimized models can improve the efficiency of your application. Try the post-training tools to optimize an already-trained TensorFlow model. Use training-time optimization tools and learn about the techniques.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    TensorFlow.NET

    TensorFlow.NET

    .NET Standard bindings for Google's TensorFlow for developing models

    ...Since the APIs are kept as similar as possible you can immediately adapt any existing TensorFlow code in C# or F# with a zero learning curve. Take a look at a comparison picture and see how comfortably a TensorFlow/Python script translates into a C# program with TensorFlow.NET.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    tf2onnx

    tf2onnx

    Convert TensorFlow, Keras, Tensorflow.js and Tflite models to ONNX

    tf2onnx converts TensorFlow (tf-1.x or tf-2.x), keras, tensorflow.js and tflite models to ONNX via command line or python API. Note: tensorflow.js support was just added. While we tested it with many tfjs models from tfhub, it should be considered experimental. TensorFlow has many more ops than ONNX and occasionally mapping a model to ONNX creates issues. tf2onnx will use the ONNX version installed on your system and installs the latest ONNX version if none is found.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    Netron

    Netron

    Visualizer for neural network, deep learning, machine learning models

    Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, Keras, TensorFlow Lite, Caffe, Darknet, Core ML, MNN, MXNet, ncnn, PaddlePaddle, Caffe2, Barracuda, Tengine, TNN, RKNN, MindSpore Lite, and UFF. Netron has experimental support for TensorFlow, PyTorch, TorchScript, OpenVINO, Torch, Arm NN, BigDL, Chainer, CNTK, Deeplearning4j, MediaPipe, ML.NET, scikit-learn, TensorFlow.js. There is an extense variety of sample model files to download or open using the browser version. ...
    Downloads: 56 This Week
    Last Update:
    See Project
  • 16
    talos

    talos

    Hyperparameter Optimization for TensorFlow, Keras and PyTorch

    Talos radically changes the ordinary Keras, TensorFlow (tf.keras), and PyTorch workflow by fully automating hyperparameter tuning and model evaluation. Talos exposes Keras and TensorFlow (tf.keras) and PyTorch functionality entirely and there is no new syntax or templates to learn. Talos is made for data scientists and data engineers that want to remain in complete control of their TensorFlow (tf.keras) and PyTorch models, but are tired of mindless parameter hopping and confusing optimization solutions that add complexity instead of reducing it. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference, transforms etc. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    Kubeflow Training Operator

    Kubeflow Training Operator

    Distributed ML Training and Fine-Tuning on Kubernetes

    Kubeflow Training Operator is a Kubernetes-native project for fine-tuning and scalable distributed training of machine learning (ML) models created with various ML frameworks such as PyTorch, TensorFlow, XGBoost, MPI, Paddle, and others.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    Kubeflow

    Kubeflow

    Machine Learning Toolkit for Kubernetes

    ...With Kubeflow you can deploy best-of-breed open-source systems for ML to diverse infrastructures. You can also take advantage of a number of great features, such as services for managing Jupyter notebooks and support for a TensorFlow Serving container. Wherever you may be running Kubernetes, you can run Kubeflow as well.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Foolbox

    Foolbox

    Python toolbox to create adversarial examples

    ...It is built on top of EagerPy and works natively with models in PyTorch, TensorFlow, and JAX.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Tensorforce

    Tensorforce

    A TensorFlow library for applied reinforcement learning

    Tensorforce is an open-source deep reinforcement learning framework built on TensorFlow, emphasizing modularized design and straightforward usability for applied research and practice.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    frugally-deep

    frugally-deep

    A lightweight header-only library for using Keras (TensorFlow) models

    Use Keras models in C++ with ease. A lightweight header-only library for using Keras (TensorFlow) models in C++. Works out-of-the-box also when compiled into a 32-bit executable. (Of course, 64 bit is fine too.) Avoids temporarily allocating (potentially large chunks of) additional RAM during convolutions (by not materializing the im2col input matrix). Utterly ignores even the most powerful GPU in your system and uses only one CPU core per prediction.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Thinc

    Thinc

    A refreshing functional take on deep learning

    ...Switch between PyTorch, TensorFlow and MXNet models without changing your application, or even create mutant hybrids using zero-copy array interchange. Develop faster and catch bugs sooner with sophisticated type checking. Trying to pass a 1-dimensional array into a model that expects two dimensions? That’s a type error. Your editor can pick it up as the code leaves your fingers.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 24
    OpenVINO

    OpenVINO

    OpenVINO™ Toolkit repository

    ...It supports pre-trained models from the Open Model Zoo, along with 100+ open source and public models in popular formats such as TensorFlow, ONNX, PaddlePaddle, MXNet, Caffe, Kaldi.
    Downloads: 25 This Week
    Last Update:
    See Project
  • 25
    KerasTuner

    KerasTuner

    A Hyperparameter Tuning Library for Keras

    KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily configure your search space with a define-by-run syntax, then leverage one of the available search algorithms to find the best hyperparameter values for your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment with new search...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next