Showing 245 open source projects for "tensorflow"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    AutoKeras

    AutoKeras

    AutoML library for deep learning

    ...The goal of AutoKeras is to make machine learning accessible to everyone. AutoKeras only support Python 3. If you followed previous steps to use virtualenv to install tensorflow, you can just activate the virtualenv. Currently, AutoKeras is only compatible with Python >= 3.7 and TensorFlow >= 2.8.0. AutoKeras supports several tasks with extremely simple interface. AutoKeras would search for the best detailed configuration for you. Moreover, you can override the base classes to create your own block.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Sonnet

    Sonnet

    TensorFlow-based neural network library

    Sonnet is a neural network library built on top of TensorFlow designed to provide simple, composable abstractions for machine learning research. Sonnet can be used to build neural networks for various purposes, including different types of learning. Sonnet’s programming model revolves around a single concept: modules. These modules can hold references to parameters, other modules and methods that apply some function on the user input.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TensorLy

    TensorLy

    Tensor Learning in Python

    ...It allows to easily perform tensor decomposition, tensor learning and tensor algebra. Its backend system allows to seamlessly perform computation with NumPy, PyTorch, JAX, TensorFlow, CuPy or Paddle, and run methods at scale on CPU or GPU.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    FLEXible

    FLEXible

    Federated Learning (FL) experiment simulation in Python

    FLEXible (Federated Learning Experiments) is a Python framework offering tools to simulate FL with deep learning. It includes built-in datasets (MNIST, CIFAR10, Shakespeare), supports TensorFlow/PyTorch, and has extensions for adversarial attacks, anomaly detection, and decision trees.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    Pfl Research

    Pfl Research

    Simulation framework for accelerating research

    A fast, modular Python framework released by Apple for privacy-preserving federated learning (PFL) simulation. Integrates with TensorFlow, PyTorch, and classical ML, and offers high-speed distributed simulation (7–72× faster than alternatives).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Alibi Detect

    Alibi Detect

    Algorithms for outlier, adversarial and drift detection

    Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    gse

    gse

    Go efficient multilingual NLP and text segmentation

    ...Support user and embed dictionary, Part-of-speech/POS tagging, analyze segment info, stop and trim words. Support multilingual: English, Chinese, Japanese and others. Support Traditional Chinese. Support HMM cut text use Viterbi algorithm. Support NLP by TensorFlow (in work). Named Entity Recognition (in work). Supports with elastic search and bleve. run JSON RPC service.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 8
    KerasTuner

    KerasTuner

    A Hyperparameter Tuning Library for Keras

    KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily configure your search space with a define-by-run syntax, then leverage one of the available search algorithms to find the best hyperparameter values for your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment with new search...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TFX

    TFX

    TFX is an end-to-end platform for deploying production ML pipelines

    TensorFlow Extended (TFX) is a Google-production-scale machine learning platform based on TensorFlow. It provides a configuration framework to express ML pipelines consisting of TFX components. TFX pipelines can be orchestrated using Apache Airflow and Kubeflow Pipelines. Both the components themselves and the integrations with orchestration systems can be extended.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    handson-ml3

    handson-ml3

    Fundamentals of Machine Learning and Deep Learning

    handson-ml3 contains the Jupyter notebooks and code for the third edition of the book Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow. It guides readers through modern machine learning and deep learning workflows using Python, with examples spanning data preparation, supervised and unsupervised learning, deep neural networks, RL, and production-ready model deployment. The third edition updates the content for TensorFlow 2 and Keras, introduces new chapters (for example on reinforcement learning or generative models), and offers best-practice code that reflects current ecosystems. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ...If you need a newer version of transformers, it is usually safe for you to upgrade transformers, as long as you do it after installing ktrain. As of v0.30.x, TensorFlow installation is optional and only required if training neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Thinc

    Thinc

    A refreshing functional take on deep learning

    ...Switch between PyTorch, TensorFlow and MXNet models without changing your application, or even create mutant hybrids using zero-copy array interchange. Develop faster and catch bugs sooner with sophisticated type checking. Trying to pass a 1-dimensional array into a model that expects two dimensions? That’s a type error. Your editor can pick it up as the code leaves your fingers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    ...It consists of a compiler, run-time, and profiling tools that enable developers to run high-performance and low latency inference using AWS Inferentia-based Amazon EC2 Inf1 instances. Using Neuron developers can easily train their machine learning models on any popular framework such as TensorFlow, PyTorch, and MXNet, and run it optimally on Amazon EC2 Inf1 instances. You can continue to use the same ML frameworks you use today and migrate your software onto Inf1 instances with minimal code changes and without tie-in to vendor-specific solutions. Neuron is pre-integrated into popular machine learning frameworks like TensorFlow, MXNet and Pytorch to provide a seamless training-to-inference workflow. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Pedalboard

    Pedalboard

    A Python library for audio

    ...It supports the most popular audio file formats and a number of common audio effects out of the box and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects. pedalboard was built by Spotify’s Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify’s AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    Transformers provides APIs and tools to easily download and train state-of-the-art pre-trained models. Using pre-trained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities. Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages. Images, for tasks like image...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    OPENRNDR

    OPENRNDR

    Kotlin library for creative coding, real-time and interactive graphics

    ...You can use OPENRNDR to visualize the data coming from these models in order to create compelling (interactive) experiences. The ORML library includes both models and interface code to make the use of those models simple. ORML is built on top of orx-tensorflow which is an OPENRNDR extra that provides tools to wrap and convert between Tensorflow and OPENRNDR primitives. With these integrations, Machine Learning has become more accessible for interactive designers, coders, and developers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    XNNPACK

    XNNPACK

    High-efficiency floating-point neural network inference operators

    ...Rather than serving as a standalone ML framework, XNNPACK provides high-performance computational primitives—such as convolutions, pooling, activation functions, and arithmetic operations—that are integrated into higher-level frameworks like TensorFlow Lite, PyTorch Mobile, ONNX Runtime, TensorFlow.js, and MediaPipe. The library is written in C/C++ and designed for maximum portability, efficiency, and performance, leveraging platform-specific instruction sets (e.g., NEON, AVX, SIMD) for optimized execution. It supports NHWC tensor layouts and allows flexible striding along the channel dimension to efficiently handle channel-split and concatenation operations without additional cost.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    NVIDIA Merlin

    NVIDIA Merlin

    Library providing end-to-end GPU-accelerated recommender systems

    ...For more information, see NVIDIA Merlin on the NVIDIA developer website. Transform data (ETL) for preprocessing and engineering features. Accelerate your existing training pipelines in TensorFlow, PyTorch, or FastAI by leveraging optimized, custom-built data loaders. Scale large deep learning recommender models by distributing large embedding tables that exceed available GPU and CPU memory. Deploy data transformations and trained models to production with only a few lines of code.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    LiteRT

    LiteRT

    LiteRT is the new name for TensorFlow Lite (TFLite)

    LiteRT is an experimental, real-time inference runtime built by Google AI Edge to run lightweight ML models on edge devices with ultra-low latency. It focuses on delivering predictable and consistent performance for models used in time-critical applications like robotics, AR/VR, and IoT. LiteRT is designed to be hardware-agnostic, with minimal dependencies and tight control over execution scheduling.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 20
    DataChain

    DataChain

    AI-data warehouse to enrich, transform and analyze unstructured data

    Datachain enables multimodal API calls and local AI inferences to run in parallel over many samples as chained operations. The resulting datasets can be saved, versioned, and sent directly to PyTorch and TensorFlow for training. Datachain can persist features of Python objects returned by AI models, and enables vectorized analytical operations over them. The typical use cases are data curation, LLM analytics and validation, image segmentation, pose detection, and GenAI alignment. Datachain is especially helpful if batch operations can be optimized – for instance, when synchronous API calls can be parallelized or where an LLM API offers batch processing.
    Downloads: 20 This Week
    Last Update:
    See Project
  • 21
    DeepChem

    DeepChem

    Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, etc

    ...DeepChem has a number of "soft" requirements. If you face some errors like ImportError: This class requires XXXX, you may need to install some packages. Deepchem provides support for TensorFlow, PyTorch, JAX and each requires an individual pip Installation. The DeepChem project maintains an extensive collection of tutorials. All tutorials are designed to be run on Google collab (or locally if you prefer). Tutorials are arranged in a suggested learning sequence that will take you from beginner to proficient at molecular machine learning and computational biology more broadly.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Volcano

    Volcano

    A Cloud Native Batch System (Project under CNCF)

    ...It provides a suite of mechanisms that are commonly required by many classes of batch & elastic workload including machine learning/deep learning, bioinformatics/genomics, and other "big data" applications. These types of applications typically run on generalized domain frameworks like TensorFlow, Spark, Ray, PyTorch, MPI, etc, which Volcano integrates with. Volcano builds upon a decade and a half of experience running a wide variety of high-performance workloads at scale using several systems and platforms, combined with best-of-breed ideas and practices from the open-source community. Until June 2021, Volcano has been widely used around the world at a variety of industries such as Internet/Cloud/Finance/ Manufacturing/Medical. ...
    Downloads: 23 This Week
    Last Update:
    See Project
  • 23
    DeepSparse

    DeepSparse

    Sparsity-aware deep learning inference runtime for CPUs

    A sparsity-aware enterprise inferencing system for AI models on CPUs. Maximize your CPU infrastructure with DeepSparse to run performant computer vision (CV), natural language processing (NLP), and large language models (LLMs).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    Metaflow

    Metaflow

    A framework for real-life data science

    Metaflow is a human-friendly Python library that helps scientists and engineers build and manage real-life data science projects. Metaflow was originally developed at Netflix to boost productivity of data scientists who work on a wide variety of projects from classical statistics to state-of-the-art deep learning.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    ...Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy, PyTorch, JAX, or TensorFlow, allowing hybrid CPU-GPU-QPU computations. The same quantum circuit model can be run on different devices. Install plugins to run your computational circuits on more devices, including Strawberry Fields, Amazon Braket, Qiskit and IBM Q, Google Cirq, Rigetti Forest, and the Microsoft QDK.
    Downloads: 0 This Week
    Last Update:
    See Project