Showing 1 open source project for "clustering algorithm"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Smart Business Texting that Generates Pipeline Icon
    Smart Business Texting that Generates Pipeline

    Create and convert pipeline at scale through industry leading SMS campaigns, automation, and conversation management.

    TextUs is the leading text messaging service provider for businesses that want to engage in real-time conversations with customers, leads, employees and candidates. Text messaging is one of the most engaging ways to communicate with customers, candidates, employees and leads. 1:1, two-way messaging encourages response and engagement. Text messages help teams get 10x the response rate over phone and email. Business text messaging has become a more viable form of communication than traditional mediums. The TextUs user experience is intentionally designed to resemble the familiar SMS inbox, allowing users to easily manage contacts, conversations, and campaigns. Work right from your desktop with the TextUs web app or use the Chrome extension alongside your ATS or CRM. Leverage the mobile app for on-the-go sending and responding.
    Learn More
  • 1
    Unsupervised TXT classifier

    Unsupervised TXT classifier

    Classify any two TXT documents, no training required - JAVA

    ...First, over-training and second, shortage of data for a training of categories. Instead, each TXT file is a category on its own, rather than an assigned category. In a way, this is similar to clustering but not really a clustering algorithm since there is some training involved. The summarizer from Classifier4J has been adjusted to accept two inputs (lets call them A and B). Then, the summarizer gets trained with A to summarize a document B, and vice versa. This extracts a relevant structure for both documents (and thus avoids the over-training) which are then compared using the Vector-Space analysis to give a range of belonging of one document to another (and thus avoids the shortage of information). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next