Showing 13 open source projects for "parallel computing datamaning"

View related business solutions
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    PyOpenCL

    PyOpenCL

    OpenCL integration for Python, plus shiny features

    PyOpenCL is a Python wrapper for the OpenCL framework, providing seamless access to parallel computing on CPUs, GPUs, and other accelerators. It enables developers to harness the full power of heterogeneous computing directly from Python, combining Python’s ease of use with the performance benefits of OpenCL. PyOpenCL also includes convenient features for managing memory, compiling kernels, and interfacing with NumPy, making it a preferred choice in scientific computing, data analysis, and machine learning workflows that demand acceleration.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including...
    Downloads: 20 This Week
    Last Update:
    See Project
  • 3
    ComputeSharp

    ComputeSharp

    .NET library to run C# code in parallel on the GPU through DX12

    ComputeSharp is a .NET library to run C# code in parallel on the GPU through DX12 and dynamically generated HLSL compute shaders. The available APIs let you access GPU devices, allocate GPU buffers and textures, move data between them and the RAM, write compute shaders entirely in C# and have them run on the GPU. The goal of this project is to make GPU computing easy to use for all .NET developers!
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    LWJGL

    LWJGL

    Java library that enables cross-platform access to popular native APIs

    LWJGL is a Java library that enables cross-platform access to popular native APIs useful in the development of graphics (OpenGL, Vulkan), audio (OpenAL) and parallel computing (OpenCL) applications. This access is direct and high-performance, yet also wrapped in a type-safe and user-friendly layer, appropriate for the Java ecosystem. LWJGL is an enabling technology and provides low-level access. It is not a framework and does not provide higher-level utilities than what the native libraries expose. ...
    Downloads: 23 This Week
    Last Update:
    See Project
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • 5
    ArrayFire

    ArrayFire

    ArrayFire, a general purpose GPU library

    ArrayFire is a general-purpose tensor library that simplifies the process of software development for the parallel architectures found in CPUs, GPUs, and other hardware acceleration devices. The library serves users in every technical computing market. Data structures in ArrayFire are smartly managed to avoid costly memory transfers and to take advantage of each performance feature provided by the underlying hardware. The community of ArrayFire developers invites you to build with us if you're interested and able to write top performing tensor functions. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    ...With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers, embedded, or automotive product platforms. TensorRT is built on CUDA®, NVIDIA’s parallel programming model, and enables you to optimize inference leveraging libraries, development tools, and technologies in CUDA-X™ for artificial intelligence, autonomous machines, high-performance computing, and graphics. With new NVIDIA Ampere Architecture GPUs, TensorRT also leverages sparse tensor cores providing an additional performance boost.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 7
    Octave Forge

    Octave Forge

    A collection of packages providing extra functionality for GNU Octave

    Octave Forge is a central location for collaborative development of packages for GNU Octave. The Octave Forge packages expand Octave's core functionality by providing field specific features via Octave's package system. See https://octave.sourceforge.io/packages.php for a list of all available packages. GNU Octave is a high-level interpreted language, primarily intended for numerical computations. It provides capabilities for the numerical solution of linear and nonlinear problems, and...
    Leader badge
    Downloads: 1,065 This Week
    Last Update:
    See Project
  • 8
    Parallel Octave

    Parallel Octave

    Parallel computing in GNU Octave

    The library consists of three main functions: a) parstart - this is an asynchronous function call b) running - to check the current status of the started function c) get_data - to get returned parameters from the called function In contrast to the other Octave Parallel package (https://wiki.octave.org/Parallel_package), this tool actually makes a common asynchronous programming in Octave possible just like in Python or C#.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    YOLO ROS

    YOLO ROS

    YOLO ROS: Real-Time Object Detection for ROS

    ...Darknet on the CPU is fast (approximately 1.5 seconds on an Intel Core i7-6700HQ CPU @ 2.60GHz × 8) but it's like 500 times faster on GPU! You'll have to have an Nvidia GPU and you'll have to install CUDA. The CMakeLists.txt file automatically detects if you have CUDA installed or not. CUDA is a parallel computing platform and application programming interface (API) model created by Nvidia.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 10
    Incanter

    Incanter

    Clojure-based, R-like statistical computing and graphics environment

    Incanter is a Clojure-based, R-like statistical computing and visualization library running on the JVM. It integrates core numerical libraries like Parallel Colt and JFreeChart to deliver data manipulation, modeling, statistical tests, and charting in a REPL-friendly environment. Start by visiting the Incanter website for an overview, check out the documentation page for a listing of HOW-TOs and examples, and then download either an Incanter executable or a pre-built version of the latest build of Incanter, which includes all the necessary dependencies, and unpack the file (if you would like to build it from source, read Building Incanter). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    PyCNN

    PyCNN

    Image Processing with Cellular Neural Networks in Python

    Image Processing with Cellular Neural Networks in Python. Cellular Neural Networks (CNN) are a parallel computing paradigm that was first proposed in 1988. Cellular neural networks are similar to neural networks, with the difference that communication is allowed only between neighboring units. Image Processing is one of its applications. CNN processors were designed to perform image processing; specifically, the original application of CNN processors was to perform real-time ultra-high frame-rate (>10,000 frame/s) processing unachievable by digital processors.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12

    Fast Matrix for Java

    General purpose matrix utilities for Java in Parallel Computing

    Fast Matrix for Java (fm4j) is a general-purpose matrix utility library for computing with dense matrices. fm4j encapsulated different underlying implementations and select the optimal one in run-time depending on the size of the input matrix. Moreover, fm4j employs Java (Tm) Concurrency to take advantage of the computation power of multi-cor processors.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    PyMW is a Python module for parallel master-worker computing in a variety of environments. With the PyMW module, users can write a single program that scales from multicore machines to global computing platforms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB