Showing 25 open source projects for "modular"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 1
    Multimodal

    Multimodal

    TorchMultimodal is a PyTorch library

    This project, also known as TorchMultimodal, is a PyTorch library for building, training, and experimenting with multimodal, multi-task models at scale. The library provides modular building blocks such as encoders, fusion modules, loss functions, and transformations that support combining modalities (vision, text, audio, etc.) in unified architectures. It includes a collection of ready model classes—like ALBEF, CLIP, BLIP-2, COCA, FLAVA, MDETR, and Omnivore—that serve as reference implementations you can adopt or adapt. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    Tunix

    Tunix

    A JAX-native LLM Post-Training Library

    ...It embraces JAX’s strengths—functional programming, jit compilation, and effortless multi-device execution—so experiments scale from a single GPU to pods of TPUs with minimal code changes. The library is organized around modular pipelines for data loading, rollout, optimization, and evaluation, letting practitioners swap components without rewriting the whole stack. Examples and reference configs demonstrate end-to-end runs for common model families, helping teams reproduce baselines before customizing. Tunix also leans into research ergonomics: logging, checkpointing, and metrics are built in, and the code is written to be hackable rather than monolithic. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Google Toolbox for Mac

    Google Toolbox for Mac

    Google Toolbox for Mac

    ...The library includes modules for networking, logging, testing, data handling, and user interface extensions, helping developers avoid reinventing common functionality. Its modular design allows developers to integrate only the components they need, improving project flexibility and performance. With well-documented interfaces and consistent coding standards, Google Toolbox for Mac serves as a reliable foundation for both small and large-scale applications. It continues to be widely used across open source and internal projects that target Apple ecosystems.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Anomalib

    Anomalib

    An anomaly detection library comprising state-of-the-art algorithms

    Anomalib is an open-source deep learning library focused on anomaly detection and localization tasks, collecting state-of-the-art algorithms and tools under one modular framework. It provides implementations of leading anomaly detection methods drawn from current research, as well as a full set of utilities for training, evaluating, benchmarking, and deploying these models on both public and private datasets. Anomalib emphasizes flexibility and reproducibility: you can use its simple APIs to plug in custom models, track experiments, tune hyperparameters, and generate visualizations that highlight anomalous regions. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Most Powerful Software Platform for EHSQ and ESG Management Icon
    The Most Powerful Software Platform for EHSQ and ESG Management

    Addresses the needs of small businesses and large global organizations with thousands of users in multiple locations.

    Choose from a complete set of software solutions across EHSQ that address all aspects of top performing Environmental, Health and Safety, and Quality management programs.
    Learn More
  • 5
    RLax

    RLax

    Library of JAX-based building blocks for reinforcement learning agents

    ...The library implements tools for Bellman equations, return distributions, general value functions, and policy optimization in both continuous and discrete action spaces. It integrates seamlessly with DeepMind’s Haiku (for neural network definition) and Optax (for optimization), making it a key component in modular RL pipelines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Penzai

    Penzai

    A JAX research toolkit to build, edit, & visualize neural networks

    ...Unlike conventional neural network libraries, Penzai exposes the full internal structure of models, enabling fine-grained inspection and modification after training. Its modular design includes tools for tree manipulation, named axes, and declarative neural network construction. The library integrates tightly with Treescope, an advanced pretty-printer for visualizing deeply nested JAX pytrees and NDArray structures. Penzai’s penzai.nn module provides a compositional, combinator-based API for building neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    grafanalib

    grafanalib

    Python library for building Grafana dashboards

    Grafanalib is a Python library for building Grafana dashboards programmatically, allowing users to automate dashboard creation and configuration.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Lightly

    Lightly

    A python library for self-supervised learning on images

    ...Lightly requires Python 3.6+ but we recommend using Python 3.7+. We recommend installing Lightly in a Linux or OSX environment. With lightly, you can use the latest self-supervised learning methods in a modular way using the full power of PyTorch. Experiment with different backbones, models, and loss functions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    fvcore

    fvcore

    Collection of common code shared among different research projects

    fvcore is a lightweight utility library that factors out common performance-minded components used across Facebook/Meta computer-vision codebases. It provides numerics and loss layers (e.g., focal loss, smooth-L1, IoU/GIoU) implemented for speed and clarity, along with initialization helpers and normalization layers for building PyTorch models. Its common modules include timers, logging, checkpoints, registry patterns, and configuration helpers that reduce boilerplate in research code. A...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Say goodbye to broken revenue funnels and poor customer experiences Icon
    Say goodbye to broken revenue funnels and poor customer experiences

    Connect and coordinate your data, signals, tools, and people at every step of the customer journey.

    LeanData is a Demand Management solution that supports all go-to-market strategies such as account-based sales development, geo-based territories, and more. LeanData features a visual, intuitive workflow native to Salesforce that enables users to view their entire lead flow in one interface. LeanData allows users to access the drag-and-drop feature to route their leads. LeanData also features an algorithms match that uses multiple fields in Salesforce.
    Learn More
  • 10
    Otter-Grader

    Otter-Grader

    A Python and R autograding solution

    Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is designed to work with classes at any scale by abstracting away the autograding internals in a way that is compatible with any instructor's assignment distribution and collection pipeline. Otter supports local grading through parallel Docker containers, grading using the autograder platforms of 3rd party learning management systems (LMSs), the deployment of an Otter-managed grading virtual machine, and a client package that allows students to run public checks on their own machines. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    GenAI Processors

    GenAI Processors

    GenAI Processors is a lightweight Python library

    GenAI Processors is a lightweight Python library for building modular, asynchronous, and composable AI pipelines around Gemini. Its central abstraction is the Processor, a unit of work that consumes an asynchronous stream of parts (text, images, audio, JSON) and produces another stream, making it natural to chain operations and keep everything streaming end-to-end. Processors can be composed sequentially (to build multi-step flows) or in parallel (to fan-out work and merge results), which makes sophisticated agent behaviors easy to express with simple operators. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    ...Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source, modular API for differential privacy research. Everyone is welcome to contribute. ML practitioners will find this to be a gentle introduction to training a model with differential privacy as it requires minimal code changes. Differential Privacy researchers will find this easy to experiment and tinker with, allowing them to focus on what matters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    learn2learn

    learn2learn

    A PyTorch Library for Meta-learning Research

    Learn2Learn is a PyTorch-based library focused on meta-learning and few-shot learning research. It provides reusable components and meta-learning algorithms, making it easier to build, train, and evaluate models that can quickly adapt to new tasks with minimal data. Learn2Learn is widely used in research for tasks such as few-shot classification, reinforcement learning, and optimization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    fastMRI

    fastMRI

    A large open dataset + tools to speed up MRI scans using ML

    fastMRI is a large-scale collaborative research project by Facebook AI Research (FAIR) and NYU Langone Health that explores how deep learning can accelerate magnetic resonance imaging (MRI) acquisition without compromising image quality. By enabling reconstruction of high-fidelity MR images from significantly fewer measurements, fastMRI aims to make MRI scanning faster, cheaper, and more accessible in clinical settings. The repository provides an open-source PyTorch framework with data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    FairScale

    FairScale

    PyTorch extensions for high performance and large scale training

    ...The library also provides pipeline parallelism, activation checkpointing, mixed precision, optimizer state sharding (OSS), and auto-wrapping policies that reduce boilerplate in complex distributed setups. Its components are modular, so teams can adopt just the sharding optimizer or the pipeline engine without rewriting their training loop. FairScale puts emphasis on correctness and debuggability, offering hook points, logging, and reference examples for common trainer patterns. Although many ideas have since landed in core PyTorch, FairScale remains a valuable reference and a practical toolbox for squeezing more performance out of multi-GPU and multi-node jobs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Jraph

    Jraph

    A Graph Neural Network Library in Jax

    Jraph (pronounced “giraffe”) is a lightweight JAX library developed by Google DeepMind for building and experimenting with graph neural networks (GNNs). It provides an efficient and flexible framework for representing, manipulating, and training models on graph-structured data. The core of Jraph is the GraphsTuple data structure, which enables users to define graphs with arbitrary node, edge, and global attributes, and to batch variable-sized graphs efficiently for JAX’s just-in-time...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    PyTorchVideo

    PyTorchVideo

    A deep learning library for video understanding research

    PyTorchVideo is a deep learning library for video understanding, providing modular components and pretrained models for tasks like action recognition, video classification, detection, and self-supervised learning. It is tightly integrated with PyTorch and PyTorch Lightning, offering flexible APIs for building and training spatiotemporal networks. The library includes efficient implementations of state-of-the-art architectures such as SlowFast, X3D, and MViT, optimized for both research prototyping and production inference. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TRFL

    TRFL

    TensorFlow Reinforcement Learning

    ...The library is designed to integrate seamlessly with TensorFlow, allowing users to define differentiable RL objectives and train models using standard optimization routines. TRFL supports both CPU and GPU TensorFlow environments, though TensorFlow itself must be installed separately. It exposes clean, modular APIs for various RL methods including Q-learning, policy gradient, and actor-critic algorithms, among others. Each function returns not only the computed loss tensor but also a detailed structure containing auxiliary information like TD errors and targets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Differentiable Neural Computer

    Differentiable Neural Computer

    A TensorFlow implementation of the Differentiable Neural Computer

    ...Published in Nature in 2016 under the paper “Hybrid computing using a neural network with dynamic external memory,” the DNC combines the pattern recognition power of neural networks with a memory module that can be written to and read from in a differentiable way. This allows the model to learn how to store and retrieve information across long time horizons, much like a traditional computer. The architecture consists of modular components including an access module for managing memory operations, a controller (often an LSTM or feedforward network) for issuing read/write commands, and submodules for temporal linkage and memory allocation tracking.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorials and examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Graph Nets library

    Graph Nets library

    Build Graph Nets in Tensorflow

    Graph Nets, developed by Google DeepMind, is a Python library designed for constructing and training graph neural networks (GNNs) using TensorFlow and Sonnet. It provides a high-level, flexible framework for building neural architectures that operate directly on graph-structured data. A graph network takes graphs as inputs, consisting of edges, nodes, and global attributes, and produces updated graphs with modified feature representations at each level. This library implements the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TF Quant Finance

    TF Quant Finance

    High-performance TensorFlow library for quantitative finance

    ...Users can value options and fixed-income instruments, simulate paths, fit curves, and calibrate models while leveraging TensorFlow’s jit compilation and automatic differentiation. The codebase is organized as modular math and finance primitives so you can combine building blocks or target end-to-end examples. It includes Bazel builds, tests, and example notebooks to accelerate learning and adoption in real workflows. With hardware acceleration and differentiable models, it enables modern techniques like gradient-based calibration and end-to-end learning of market dynamics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Video Nonlocal Net

    Video Nonlocal Net

    Non-local Neural Networks for Video Classification

    video-nonlocal-net implements Non-local Neural Networks for video understanding, adding long-range dependency modeling to 2D/3D ConvNet backbones. Non-local blocks compute attention-like responses across all positions in space-time, allowing a feature at one frame and location to aggregate information from distant frames and regions. This formulation improves action recognition and spatiotemporal reasoning, especially for classes requiring context beyond short temporal windows. The repo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    jsondata

    jsondata

    Modular JSON by trees and branches, pointers and patches

    The 'jsondata' package provides for the modular in-memory processing of JSON data by trees, branches, pointers, and patches. The main interface classes are: - JSONData - Core for RFC7159 based data structures. Provides modular data components. - JSONDataSerializer - Core for RFC7159 based data persistence. Provides modular data serialization. - JSONPointer - RFC6901 for addressing by pointer paths.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    TensorFlow World

    TensorFlow World

    Simple and ready-to-use tutorials for TensorFlow

    ...Deep Learning is in very high interest these days - there's a crucial need for rapid and optimized implementations of the algorithms and architectures. TensorFlow is designed to facilitate this goal. The strong advantage of TensorFlow is it flexibility in designing highly modular models which can also be a disadvantage for beginners since a lot of the pieces must be considered together when creating the model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next