Showing 26 open source projects for "model train design"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    DeepSeed

    DeepSeed

    Deep learning optimization library making distributed training easy

    DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. DeepSpeed delivers extreme-scale model training for everyone, from data scientists training on massive supercomputers to those training on low-end clusters or even on a single GPU. Using current generation of GPU clusters with hundreds of devices, 3D parallelism of DeepSpeed can efficiently train deep learning models with trillions of parameters. With just a single GPU, ZeRO-Offload of DeepSpeed can train models with over 10B parameters, 10x bigger than the state of arts, democratizing multi-billion-parameter model training such that many deep learning scientists can explore bigger and better models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    ...All it takes is 10-20 lines of code to get started with training a GNN model (see the next section for a quick tour).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    ...It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior network is needed after all. And so research continues. For simpler training, you can directly supply text strings instead of precomputing text encodings. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    Qualcomm Innovation Center (QuIC) is at the forefront of enabling low-power inference at the edge through its pioneering model-efficiency research. QuIC has a mission to help migrate the ecosystem toward fixed-point inference. With this goal, QuIC presents the AI Model Efficiency Toolkit (AIMET) - a library that provides advanced quantization and compression techniques for trained neural network models. AIMET enables neural networks to run more efficiently on fixed-point AI hardware...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Tunix

    Tunix

    A JAX-native LLM Post-Training Library

    Tunix is a JAX-native library for post-training large language models, bringing supervised fine-tuning, reinforcement learning–based alignment, and knowledge distillation into one coherent toolkit. It embraces JAX’s strengths—functional programming, jit compilation, and effortless multi-device execution—so experiments scale from a single GPU to pods of TPUs with minimal code changes. The library is organized around modular pipelines for data loading, rollout, optimization, and evaluation,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    DeepEP

    DeepEP

    DeepEP: an efficient expert-parallel communication library

    DeepEP is a communication library designed specifically to support Mixture-of-Experts (MoE) and expert parallelism (EP) deployments. Its core role is to implement high-throughput, low-latency all-to-all GPU communication kernels, which handle the dispatching of tokens to different experts (or shards) and then combining expert outputs back into the main data flow. Because MoE architectures require routing inputs to different experts, communication overhead can become a bottleneck — DeepEP...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    ...Quantum circuits can be set up to interface with either NumPy, PyTorch, JAX, or TensorFlow, allowing hybrid CPU-GPU-QPU computations. The same quantum circuit model can be run on different devices. Install plugins to run your computational circuits on more devices, including Strawberry Fields, Amazon Braket, Qiskit and IBM Q, Google Cirq, Rigetti Forest, and the Microsoft QDK.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Penzai

    Penzai

    A JAX research toolkit to build, edit, & visualize neural networks

    Penzai, developed by Google DeepMind, is a JAX-based library for representing, visualizing, and manipulating neural network models as functional pytree data structures. It is designed to make machine learning research more interpretable and interactive, particularly for tasks like model surgery, ablation studies, architecture debugging, and interpretability research. Unlike conventional neural network libraries, Penzai exposes the full internal structure of models, enabling fine-grained inspection and modification after training. Its modular design includes tools for tree manipulation, named axes, and declarative neural network construction. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Yeastar: Business Phone System and Unified Communications Icon
    Yeastar: Business Phone System and Unified Communications

    Go beyond just a PBX with all communications integrated as one.

    User-friendly, optimized, and scalable, the Yeastar P-Series Phone System redefines business connectivity by bringing together calling, meetings, omnichannel messaging, and integrations in one simple platform—removing the limitations of distance, platforms, and systems.
    Learn More
  • 10
    Multimodal

    Multimodal

    TorchMultimodal is a PyTorch library

    ...The library provides modular building blocks such as encoders, fusion modules, loss functions, and transformations that support combining modalities (vision, text, audio, etc.) in unified architectures. It includes a collection of ready model classes—like ALBEF, CLIP, BLIP-2, COCA, FLAVA, MDETR, and Omnivore—that serve as reference implementations you can adopt or adapt. The design emphasizes composability: you can mix and match encoder, fusion, and decoder components rather than starting from monolithic models. The repository also includes example scripts and datasets for common multimodal tasks (e.g. retrieval, visual question answering, grounding) so you can test and compare models end to end. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Flax

    Flax

    Flax is a neural network library for JAX

    Flax is a flexible neural-network library for JAX that embraces functional programming while offering ergonomic module abstractions. Its design separates pure computation from state by threading parameter collections and RNGs explicitly, enabling reproducibility, transformation, and easy experimentation with JAX transforms like jit, pmap, and vmap. Modules define parameterized computations, but initialization and application remain side-effect free, which pairs naturally with JAX’s staging and compilation model. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    django-viewflow

    django-viewflow

    Reusable workflow library for Django

    Viewflow is a lightweight reusable workflow library that helps to organize people collaboration business logic in Django applications. In conjunction with Django-material, they could be used as the framework to build ready-to-use business applications in minutes. Django web framework solves only technical problems related to the client-server interaction on top of the stateless HTTP protocol. Model-View-Template separation pattern helps to maintain simple CRUD-based logic. Viewflow is the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    PyTorch Transfer-Learning-Library

    PyTorch Transfer-Learning-Library

    Transfer Learning Library for Domain Adaptation, Task Adaptation, etc.

    TLlib is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms or readily apply existing algorithms. We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Fairseq

    Fairseq

    Facebook AI Research Sequence-to-Sequence Toolkit written in Python

    Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks. We provide reference implementations of various sequence modeling papers. Recent work by Microsoft and Google has shown that data parallel training can be made significantly more efficient by sharding the model parameters and optimizer state across data parallel workers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Spleeter

    Spleeter

    Deezer source separation library including pretrained models

    Spleeter is the Deezer source separation library with pretrained models written in Python and using Tensorflow. It makes it easy to train music source separation models (assuming you have a dataset of isolated sources), and provides already trained state of the art models for performing various flavours of separation. 2 stems and 4 stems models have state of the art performances on the musdb dataset. Spleeter is also very fast as it can perform separation of audio files to 4 stems 100x...
    Downloads: 95 This Week
    Last Update:
    See Project
  • 16
    ReinventCommunity

    ReinventCommunity

    Jupyter Notebook tutorials for REINVENT 3.2

    This repository is a collection of useful jupyter notebooks, code snippets and example JSON files illustrating the use of Reinvent 3.2.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    TRFL

    TRFL

    TensorFlow Reinforcement Learning

    TRFL, developed by Google DeepMind, is a TensorFlow-based library that provides a collection of essential building blocks for reinforcement learning (RL) algorithms. Pronounced “truffle,” it simplifies the implementation of RL agents by offering reusable components such as loss functions, value estimation tools, and temporal difference (TD) learning operators. The library is designed to integrate seamlessly with TensorFlow, allowing users to define differentiable RL objectives and train...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    NLP Architect

    NLP Architect

    A model library for exploring state-of-the-art deep learning

    ...NLP Architect is designed to be flexible for adding new models, neural network components, data handling methods, and for easy training and running models. NLP Architect is a model-oriented library designed to showcase novel and different neural network optimizations. The library contains NLP/NLU-related models per task, different neural network topologies (which are used in models), procedures for simplifying workflows in the library, pre-defined data processors and dataset loaders and misc utilities. The library is designed to be a tool for model development: data pre-processing, build model, train, validate, infer, save or load a model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MMdnn

    MMdnn

    Tools to help users inter-operate among deep learning frameworks

    MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML. MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model management, and "dnn" is the acronym of deep neural network. We implement a universal converter to convert DL models between frameworks, which means you can train a model with one framework and deploy it with another. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Higher

    Higher

    higher is a pytorch library

    ...By offering a clear and flexible interface, higher simplifies building complex learning algorithms that require gradient tracking across multiple update levels. Its design ensures compatibility with existing PyTorch models.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    ...PyTorch-NLP comes with pre-trained embeddings, samplers, dataset loaders, metrics, neural network modules and text encoders. It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent. For example, check out this example code for training on the Stanford Natural Language Inference (SNLI) Corpus. Now you've setup your pipeline, you may want to ensure that some functions run deterministically. Wrap any code that's random, with fork_rng and you'll be good to go. Now that you've computed your vocabulary, you may want to make use of pre-trained word vectors to set your embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Django REST Pandas

    Django REST Pandas

    Serves up Pandas dataframes via the Django REST Framework

    Django REST Pandas (DRP) provides a simple way to generate and serve pandas DataFrames via the Django REST Framework. The resulting API can serve up CSV (and a number of other formats for consumption by a client-side visualization tool like d3.js. The design philosophy of DRP enforces a strict separation between data and presentation. This keeps the implementation simple, but also has the nice side effect of making it trivial to provide the source data for your visualizations. This...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Teach Me Quantum

    Teach Me Quantum

    Practical Course on Quantum Information Science and Quantum Computing

    A university-level course on Quantum Computing and Quantum Information Science that incorporates IBM Q Experience and Qiskit. This course is adequate for general audiences without prior knowledge on Quantum Mechanics and Quantum Computing (see prior knowledge), has an estimated average duration of 10 weeks at 3h/week (see duration), and is meant to be the entrypoint into the Quantum World.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    PrettyTensor

    PrettyTensor

    Pretty Tensor: Fluent Networks in TensorFlow

    ...Pretty Tensor preserves full compatibility with TensorFlow’s core functionality while providing syntactic sugar for defining complex architectures such as convolutional and recurrent networks. The library’s design emphasizes flexibility and modularity, supporting advanced features like default scopes, parameter templates, and variable reuse. It also allows easy integration with custom operations and third-party libraries, making it ideal for both research experimentation and production-grade modeling. By combining TensorFlow’s power with an intuitive builder-style API, Pretty Tensor accelerates model development without sacrificing transparency or control.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Question Answering Corpus

    Question Answering Corpus

    Question answering dataset in "Teaching Machines to Read & Comprehend"

    RC-Data is a dataset generation framework created by Google DeepMind to produce large-scale reading comprehension question-answer pairs from CNN and Daily Mail news articles. The dataset, introduced in the 2015 paper “Teaching Machines to Read and Comprehend” (Hermann et al., NIPS 2015), was among the first large corpora designed to train and evaluate machine reading and comprehension models. The repository provides scripts for downloading archived CNN and Daily Mail articles from the...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next