Showing 89 open source projects for "network"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Connect with customers in one app Icon
    Connect with customers in one app

    Businesses of all sizes seeking an AI-enhanced, all-in-one communication platform to unify voice, video, and messaging for improved team collaboration

    Dialpad Connect is an AI-powered unified communications platform that combines voice, video, and messaging to enhance team collaboration and customer interactions. It features real-time call transcription, automated call summaries, and AI-generated action items to help users stay focused during conversations. The platform integrates seamlessly with popular business apps like Salesforce, Zendesk, Microsoft Teams, and Google Workspace to streamline workflows. Designed for businesses of all sizes, Dialpad Connect delivers enterprise-grade reliability with 100% uptime SLA and robust disaster recovery. Security and privacy are core priorities, meeting standards like GDPR, HIPAA, and SOC 2 compliance. Dialpad Connect helps companies elevate customer experiences while boosting team productivity.
    Learn More
  • 1
    MMdnn

    MMdnn

    Tools to help users inter-operate among deep learning frameworks

    ...MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model management, and "dnn" is the acronym of deep neural network. We implement a universal converter to convert DL models between frameworks, which means you can train a model with one framework and deploy it with another. During the model conversion, we generate some code snippets to simplify later retraining or inference. We provide a model collection to help you find some popular models. We provide a model visualizer to display the network architecture more intuitively. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    Time series forecasting is one of the most important topics in data science. Almost every business needs to predict the future in order to make better decisions and allocate resources more effectively. This repository provides examples and best practice guidelines for building forecasting solutions. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in forecasting algorithms to build solutions and operationalize them. Rather than...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    AdaNet

    AdaNet

    Fast and flexible AutoML with learning guarantees

    ...AdaNet builds on recent AutoML efforts to be fast and flexible while providing learning guarantees. Importantly, AdaNet provides a general framework for not only learning a neural network architecture but also for learning to the ensemble to obtain even better models. At each iteration, it measures the ensemble loss for each candidate, and selects the best one to move onto the next iteration. Adaptive neural architecture search and ensemble learning in a single train call. Regression, binary and multi-class classification, and multi-head task support. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Graph Nets library

    Graph Nets library

    Build Graph Nets in Tensorflow

    Graph Nets, developed by Google DeepMind, is a Python library designed for constructing and training graph neural networks (GNNs) using TensorFlow and Sonnet. It provides a high-level, flexible framework for building neural architectures that operate directly on graph-structured data. A graph network takes graphs as inputs, consisting of edges, nodes, and global attributes, and produces updated graphs with modified feature representations at each level. This library implements the foundational ideas from DeepMind’s paper “Relational Inductive Biases, Deep Learning, and Graph Networks”, offering tools to explore relational reasoning and message-passing neural networks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Native Teams: Payments and Employment for International Teams Icon
    Native Teams: Payments and Employment for International Teams

    Expand Your Global Team in 85+ Countries

    With Native Teams’ Employer of Record (EOR) service, you can compliantly hire in 85+ countries without setting up a legal entity. From dedicated employee support and localised benefits to tax optimisation, we help you build a global team that feels truly cared for.
    Learn More
  • 5
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    ...It’s built with the very latest research in mind, and was designed from day one to support rapid prototyping. PyTorch-NLP comes with pre-trained embeddings, samplers, dataset loaders, metrics, neural network modules and text encoders. It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent. For example, check out this example code for training on the Stanford Natural Language Inference (SNLI) Corpus. Now you've setup your pipeline, you may want to ensure that some functions run deterministically. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    I3D models trained on Kinetics

    I3D models trained on Kinetics

    Convolutional neural network model for video classification

    Kinetics-I3D, developed by Google DeepMind, provides trained models and implementation code for the Inflated 3D ConvNet (I3D) architecture introduced in the paper “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset” (CVPR 2017). The I3D model extends the 2D convolutional structure of Inception-v1 into 3D, allowing it to capture spatial and temporal information from videos for action recognition. This repository includes pretrained I3D models on the Kinetics dataset, with...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    captcha_break

    captcha_break

    Identification codes

    This project will use Keras to build a deep convolutional neural network to identify the captcha verification code. It is recommended to use a graphics card to run the project. The following visualization codes are jupyter notebookall done in . If you want to write a python script, you can run it normally with a little modification. Of course, you can also remove these visualization codes. captcha is a library written in python to generate verification codes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Video Nonlocal Net

    Video Nonlocal Net

    Non-local Neural Networks for Video Classification

    video-nonlocal-net implements Non-local Neural Networks for video understanding, adding long-range dependency modeling to 2D/3D ConvNet backbones. Non-local blocks compute attention-like responses across all positions in space-time, allowing a feature at one frame and location to aggregate information from distant frames and regions. This formulation improves action recognition and spatiotemporal reasoning, especially for classes requiring context beyond short temporal windows. The repo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    SFD

    SFD

    S³FD: Single Shot Scale-invariant Face Detector, ICCV, 2017

    S³FD (Single Shot Scale-invariant Face Detector) is a real-time face detection framework designed to handle faces of various sizes with high accuracy using a single deep neural network. Developed by Shifeng Zhang, S³FD introduces a scale-compensation anchor matching strategy and enhanced detection architecture that makes it especially effective for detecting small faces—a long-standing challenge in face detection research. The project builds upon the SSD framework in Caffe, with modifications tailored for face detection tasks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The #1 CRM in Real Estate Icon
    The #1 CRM in Real Estate

    Chime is the all-in-one CRM and Sales Acceleration platform that real estate professionals LOVE to use!

    Automate marketing campaigns, boost your brand awareness, capture and convert more leads, all in ONE intuitive platform.
    Learn More
  • 10
    Mixup-CIFAR10

    Mixup-CIFAR10

    mixup: Beyond Empirical Risk Minimization

    mixup-cifar10 is the official PyTorch implementation of “mixup: Beyond Empirical Risk Minimization” (Zhang et al., ICLR 2018), a foundational paper introducing mixup, a simple yet powerful data augmentation technique for training deep neural networks. The core idea of mixup is to generate synthetic training examples by taking convex combinations of pairs of input samples and their labels. By interpolating both data and labels, the model learns smoother decision boundaries and becomes more...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Compare GAN

    Compare GAN

    Compare GAN code

    compare_gan is a research codebase that standardizes how Generative Adversarial Networks are trained and evaluated so results are comparable across papers and datasets. It offers reference implementations for popular GAN architectures and losses, plus a consistent training harness to remove confounding differences in optimization or preprocessing. The library’s evaluation suite includes widely used metrics and diagnostics that quantify sample quality, diversity, and mode coverage. With...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Pyrlang

    Pyrlang

    Erlang node implemented in Python 3.5+ (Asyncio-based)

    This is a drop-in Erlang node implementation in Python 3, implementing a network Erlang node protocol. It was designed to allow interoperation between existing Python projects and BEAM languages: Erlang, Elixir, Gleam, Luaerl, LFE, Clojerl, and such. With just a few lines of startup code your Python program becomes an Erlang network node, participating in the Erlang cluster.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    C++ Standard Airline IT Object Library
    That project aims at providing a clean API, and the corresponding C++ implementation, for the basis of Airline IT Business Object Model (BOM), ie, to be used by several other Open Source projects, such as RMOL, Air-Sched, Travel-CCM, OpenTREP, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    PyGObject for Windows

    PyGObject for Windows

    All-In-One PyGI/PyGObject for Windows Installer

    Cross-platform python dynamic bindings of GObject-based libraries for Windows 32-bit and 64-bit.
    Downloads: 28 This Week
    Last Update:
    See Project
  • 16
    PrettyTensor

    PrettyTensor

    Pretty Tensor: Fluent Networks in TensorFlow

    Pretty Tensor is a high-level API built on top of TensorFlow that simplifies the process of creating and managing deep learning models. It wraps TensorFlow tensors in a chainable object syntax, allowing developers to build multi-layer neural networks with concise and readable code. Pretty Tensor preserves full compatibility with TensorFlow’s core functionality while providing syntactic sugar for defining complex architectures such as convolutional and recurrent networks. The library’s design...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17

    AirTSP

    Simulated Airline Travel Solution Provider Library

    AirTSP is also named AirTSP (TSP standing for Travel Service Provider). That project aims at providing a clean API and a simple implementation, as a C++ library, of an Airline Schedule Management System. It is intended to be used in simulated environments only: it is not designed to work in the real-world of Airline IT operations. AirTSP/AirTSP makes an extensive use of existing open-source libraries for increased functionality, speed and accuracy. In particular the Boost (C++...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    What is QPF 2.6 ? QPF 2.6 (or Quantum Programming framework 2.6) is a free simple and easy to use framework dedicated to supporting programmers who are developing software for the D-wave one series of quantum computers.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Feed-forward neural network for python
    ffnet is a fast and easy-to-use feed-forward neural network training solution for python. Many nice features are implemented: arbitrary network connectivity, automatic data normalization, very efficient training tools, network export to fortran code. Now ffnet has also a GUI called ffnetui.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    HYBRYD

    Library written in C with Python API for IPv6 networking

    This project is a rewritten of an initial project that I've called GLUE and created in 2005. I'm trying to readapt it for Python 2.7.3 and GCC 4.6.3 The library has to be build as a simple Python extension using >python setup.py install and allows to create different kind of servers, clients or hybryds (clients-servers) over (TCP/UDP) using the Ipv6 Protocol. The architecture of the code is based on brain architecture. Will put an IPv6 adress active available as soon as...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    C++ Simulated Travel Distribution System
    That project aims at providing a clean API and a simple implementation, as a C++ library, of a Travel-oriented Distribution System. It corresponds to the simulated version of the real-world Computerized Reservation Systems (CRS).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    C++ Airline Inventory Management Library
    That project aims at providing a clean API and a simple implementation, as a C++ library, of an Airline-related Inventory Management system. That library uses the Standard Airline IT C++ object model (http://sf.net/projects/stdair).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Open Airline Revenue Accounting
    That project aims at delivering a reference implementation of a library, estimating and serving average prices paid for air travel products. It is not intended for use by an actual airline, but rather by simulators or other airline-related modules of
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Neural Libs

    Neural Libs

    Neural network library for developers

    This project includes the implementation of a neural network MLP, RBF, SOM and Hopfield networks in several popular programming languages. The project also includes examples of the use of neural networks as function approximation and time series prediction. Includes a special program makes it easy to test neural network based on training data and the optimization of the network.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    MetaNet

    MetaNet

    Free portable library for meta neural network research

    MetaNet provides free library for meta neural network research. MetaNet library contain feed-forward neural net realisation and several integrated dataset (MNIST).
    Downloads: 0 This Week
    Last Update:
    See Project