Open Source Python Large Language Models (LLM) - Page 6

Python Large Language Models (LLM)

View 320 business solutions

Browse free open source Python Large Language Models (LLM) and projects below. Use the toggles on the left to filter open source Python Large Language Models (LLM) by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Orchestrate Your AI Agents with Zenflow Icon
    Orchestrate Your AI Agents with Zenflow

    The multi-agent workflow engine for modern teams. Zenflow executes coding, testing, and verification with deep repo awareness

    Zenflow orchestrates AI agents like a real engineering system. With parallel execution, spec-driven workflows, and deep multi-repo understanding, agents plan, implement, test, and verify end-to-end. Upgrade to AI workflows that work the way your team does.
    Try free now
  • 1
    Mirascope

    Mirascope

    LLM abstractions that aren't obstructions

    Mirascope is a powerful, flexible, and user-friendly library that simplifies the process of working with LLMs through a unified interface that works across various supported providers, including OpenAI, Anthropic, Mistral, Gemini, Groq, Cohere, LiteLLM, Azure AI, Vertex AI, and Bedrock. Whether you're generating text, extracting structured information, or developing complex AI-driven agent systems, Mirascope provides the tools you need to streamline your development process and create powerful, robust applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node mixed-precision training. Supported models: Jasper, QuartzNet, CitriNet, Conformer-CTC, Conformer-Transducer, Squeezeformer-CTC, Squeezeformer-Transducer, ContextNet, LSTM-Transducer (RNNT), LSTM-CTC. NGC collection of pre-trained speech processing models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    NeMo Curator

    NeMo Curator

    Scalable data pre processing and curation toolkit for LLMs

    NeMo Curator is a Python library specifically designed for fast and scalable dataset preparation and curation for large language model (LLM) use-cases such as foundation model pretraining, domain-adaptive pretraining (DAPT), supervised fine-tuning (SFT) and paramter-efficient fine-tuning (PEFT). It greatly accelerates data curation by leveraging GPUs with Dask and RAPIDS, resulting in significant time savings. The library provides a customizable and modular interface, simplifying pipeline expansion and accelerating model convergence through the preparation of high-quality tokens. At the core of the NeMo Curator is the DocumentDataset which serves as the the main dataset class. It acts as a straightforward wrapper around a Dask DataFrame. The Python library offers easy-to-use methods for expanding the functionality of your curation pipeline while eliminating scalability concerns.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    NewsNotFound

    NewsNotFound

    This is the entire source code for NewsNotFound's article gen process

    Our mission is to lead the way in AI journalism by providing completely neutral and unbiased news articles that can be governed by the public. NewsNotFound is a news website located at https://newsnotfound.com. We want to build the most unbiased news platform on the internet.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    OSS-Fuzz Gen

    OSS-Fuzz Gen

    LLM powered fuzzing via OSS-Fuzz

    OSS-Fuzz-Gen is a companion project that helps automatically create or improve fuzz targets for open-source codebases, aiming to increase coverage in OSS-Fuzz with minimal maintainer effort. It analyses a library’s APIs, examples, and tests to propose harnesses that exercise parsers, decoders, or protocol handlers—precisely the code where fuzzing pays off. The system integrates with modern LLM-assisted workflows to draft harness code and then iterates based on build errors or low coverage signals. Importantly, it aligns with OSS-Fuzz conventions, generating corpus seeds, build rules, and sanitizer settings so projects can plug in quickly. Reports highlight what functions were targeted, how coverage evolved, and where manual hints could unlock more paths. The goal is pragmatic: shrink the gap between “we should fuzz this” and “we have robust fuzzing running in CI,” especially for understaffed maintainers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    OpenCompass

    OpenCompass

    OpenCompass is an LLM evaluation platform

    Just like a compass guides us on our journey, OpenCompass will guide you through the complex landscape of evaluating large language models. With its powerful algorithms and intuitive interface, OpenCompass makes it easy to assess the quality and effectiveness of your NLP models. OpenCompass is a one-stop platform for large model evaluation, aiming to provide a fair, open, and reproducible benchmark for large model evaluation. Pre-support for 20+ HuggingFace and API models, a model evaluation scheme of 50+ datasets with about 300,000 questions, comprehensively evaluating the capabilities of the models in five dimensions. One line command to implement task division and distributed evaluation, completing the full evaluation of billion-scale models in just a few hours. Support for zero-shot, few-shot, and chain-of-thought evaluations, combined with standard or dialogue type prompt templates, to easily stimulate the maximum performance of various models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    OpenLLMetry

    OpenLLMetry

    Open-source observability for your LLM application

    The repo contains standard OpenTelemetry instrumentations for LLM providers and Vector DBs, as well as a Traceloop SDK that makes it easy to get started with OpenLLMetry, while still outputting standard OpenTelemetry data that can be connected to your observability stack. If you already have OpenTelemetry instrumented, you can just add any of our instrumentations directly.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    PEFT

    PEFT

    State-of-the-art Parameter-Efficient Fine-Tuning

    Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's parameters. Fine-tuning large-scale PLMs is often prohibitively costly. In this regard, PEFT methods only fine-tune a small number of (extra) model parameters, thereby greatly decreasing the computational and storage costs. Recent State-of-the-Art PEFT techniques achieve performance comparable to that of full fine-tuning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    PandasAI

    PandasAI

    PandasAI is a Python library that integrates generative AI

    PandasAI is a Python library that adds Generative AI capabilities to pandas, the popular data analysis and manipulation tool. It is designed to be used in conjunction with pandas, and is not a replacement for it. PandasAI makes pandas (and all the most used data analyst libraries) conversational, allowing you to ask questions to your data in natural language. For example, you can ask PandasAI to find all the rows in a DataFrame where the value of a column is greater than 5, and it will return a DataFrame containing only those rows.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    Petals

    Petals

    Run 100B+ language models at home, BitTorrent-style

    Run 100B+ language models at home, BitTorrent‑style. Run large language models like BLOOM-176B collaboratively — you load a small part of the model, then team up with people serving the other parts to run inference or fine-tuning. Single-batch inference runs at ≈ 1 sec per step (token) — up to 10x faster than offloading, enough for chatbots and other interactive apps. Parallel inference reaches hundreds of tokens/sec. Beyond classic language model APIs — you can employ any fine-tuning and sampling methods, execute custom paths through the model, or see its hidden states. You get the comforts of an API with the flexibility of PyTorch. You can also host BLOOMZ, a version of BLOOM fine-tuned to follow human instructions in the zero-shot regime — just replace bloom-petals with bloomz-petals. Petals runs large language models like BLOOM-176B collaboratively — you load a small part of the model, then team up with people serving the other parts to run inference or fine-tuning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    PromptCraft-Robotics

    PromptCraft-Robotics

    Community for applying LLMs to robotics and a robot simulator

    The PromptCraft-Robotics repository serves as a community for people to test and share interesting prompting examples for large language models (LLMs) within the robotics domain. We also provide a sample robotics simulator (built on Microsoft AirSim) with ChatGPT integration for users to get started. We currently focus on OpenAI's ChatGPT, but we also welcome examples from other LLMs (for example open-sourced models or others with API access such as GPT-3 and Codex).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Purple Llama

    Purple Llama

    Set of tools to assess and improve LLM security

    Purple Llama is an umbrella safety initiative that aggregates tools, benchmarks, and mitigations to help developers build responsibly with open generative AI. Its scope spans input and output safeguards, cybersecurity-focused evaluations, and reference shields that can be inserted at inference time. The project evolves as a hub for safety research artifacts like Llama Guard and Code Shield, along with dataset specs and how-to guides for integrating checks into applications. CyberSecEval, one of its flagship components, provides repeatable evaluations for security risk, including agent-oriented tasks such as automated patching benchmarks. The aim is to make safety practical: ship testable baselines, publish metrics, and provide drop-in implementations that reduce friction for teams adopting Llama. Documentation and sites attached to the repo walk through setup, usage, and the rationale behind each safeguard, encouraging community contributions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Qwen-Audio

    Qwen-Audio

    Chat & pretrained large audio language model proposed by Alibaba Cloud

    Qwen-Audio is a large audio-language model developed by Alibaba Cloud, built to accept various types of audio input (speech, natural sounds, music, singing) along with text input, and output text. There is also an instruction-tuned version called Qwen-Audio-Chat which supports conversational interaction (multi-round), audio + text input, creative tasks and reasoning over audio. It uses multi-task training over many different audio tasks (30+), and achieves strong multi-benchmarks performance without task-specific fine‐tuning. It includes features such as flexible multi-run chat, audio understanding/reasoning, music appreciation, and also tool usage (e.g. voice editing).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Qwen-VL

    Qwen-VL

    Chat & pretrained large vision language model

    Qwen-VL is Alibaba Cloud’s vision-language large model family, designed to integrate visual and linguistic modalities. It accepts image inputs (with optional bounding boxes) and text, and produces text (and sometimes bounding boxes) as output. The model variants (VL-Plus, VL-Max, etc.) have been upgraded for better visual reasoning, text recognition from images, fine-grained understanding, and support for high image resolutions / extreme aspect ratios. Qwen-VL supports multilingual inputs and conversation (e.g. Chinese, English), and is aimed at tasks like image captioning, question answering on images (VQA, DocVQA), grounding (detecting objects or regions from textual queries), etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Qwen2-Audio

    Qwen2-Audio

    Repo of Qwen2-Audio chat & pretrained large audio language model

    Qwen2-Audio is a large audio-language model by Alibaba Cloud, part of the Qwen series. It is trained to accept various audio signal inputs (including speech, sounds, etc.) and perform both voice chat and audio analysis, producing textual responses. It supports two major modes: Voice Chat (interactive voice only input) and Audio Analysis (audio + text instructions), with both base and instruction-tuned models. It is evaluated on many benchmarks (speech recognition, translation, sound classification, emotion, etc.), and offers pretrained models (e.g. 7B) released via ModelScope and Hugging Face. Code & examples provided with Hugging Face transformers, and usage via AutoProcessor, model classes etc. High performance on many standard benchmarks: ASR, speech-emotion recognition, vocal sound classification, speech translation etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Qwen3 Embedding

    Qwen3 Embedding

    Designed for text embedding and ranking tasks

    Qwen3-Embedding is a model series from the Qwen family designed specifically for text embedding and ranking tasks. It builds upon the Qwen3 base/dense models and offers several sizes (0.6B, 4B, 8B parameters), for both embedding and reranking, with high multilingual capability, long‐context understanding, and reasoning. It achieves state-of-the-art performance on benchmarks like MTEB (Multilingual Text Embedding Benchmark) and supports instruction-aware embedding (i.e. embedding task instructions along with queries) and flexible embedding/vector dimension definitions. It is meant for tasks such as text retrieval, classification, clustering, bitext mining, and code retrieval.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Repo of Tree of Thoughts (ToT)

    Repo of Tree of Thoughts (ToT)

    Implementation of "Tree of Thoughts

    Language models are increasingly being deployed for general problem-solving across a wide range of tasks, but are still confined to token-level, left-to-right decision-making processes during inference. This means they can fall short in tasks that require exploration, strategic lookahead, or where initial decisions play a pivotal role. To surmount these challenges, we introduce a new framework for language model inference, Tree of Thoughts (ToT), which generalizes over the popular Chain of Thought approach to prompting language models and enables exploration over coherent units of text (thoughts) that serve as intermediate steps toward problem-solving. ToT allows LMs to perform deliberate decision-making by considering multiple different reasoning paths and self-evaluating choices to decide the next course of action, as well as looking ahead or backtracking when necessary to make global choices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Scikit-LLM

    Scikit-LLM

    Seamlessly integrate LLMs into scikit-learn

    Seamlessly integrate powerful language models like ChatGPT into sci-kit-learn for enhanced text analysis tasks. At the moment the majority of the Scikit-LLM estimators are only compatible with some of the OpenAI models. Hence, a user-provided OpenAI API key is required. Additionally, Scikit-LLM will ensure that the obtained response contains a valid label. If this is not the case, a label will be selected randomly (label probabilities are proportional to label occurrences in the training set). Note: unlike in a typical supervised setting, the performance of a zero-shot classifier greatly depends on how the label itself is structured. It has to be expressed in natural language, descriptive, and self-explanatory.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    SentenceTransformers

    SentenceTransformers

    Multilingual sentence & image embeddings with BERT

    SentenceTransformers is a Python framework for state-of-the-art sentence, text and image embeddings. The initial work is described in our paper Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. You can use this framework to compute sentence / text embeddings for more than 100 languages. These embeddings can then be compared e.g. with cosine-similarity to find sentences with a similar meaning. This can be useful for semantic textual similar, semantic search, or paraphrase mining. The framework is based on PyTorch and Transformers and offers a large collection of pre-trained models tuned for various tasks. Further, it is easy to fine-tune your own models. Our models are evaluated extensively and achieve state-of-the-art performance on various tasks. Further, the code is tuned to provide the highest possible speed.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Streamline Analyst

    Streamline Analyst

    AI agent that streamlines the entire process of data analysis

    Streamline Analyst is a cutting-edge, open-source application powered by Large Language Models (LLMs) designed to revolutionize data analysis. This Data Analysis Agent effortlessly automates all the tasks such as data cleaning, preprocessing, and even complex operations like identifying target objects, partitioning test sets, and selecting the best-fit models based on your data. With Streamline Analyst, results visualization and evaluation become seamless.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Swirl

    Swirl

    Swirl queries any number of data sources with APIs

    Swirl queries any number of data sources with APIs and uses spaCy and NLTK to re-rank the unified results without extracting and indexing anything! Includes zero-code configs for Apache Solr, ChatGPT, Elastic Search, OpenSearch, PostgreSQL, Google BigQuery, RequestsGet, Google PSE, NLResearch.com, Miro & more! SWIRL adapts and distributes queries to anything with a search API - search engines, databases, noSQL engines, cloud/SaaS services etc - and uses AI (Large Language Models) to re-rank the unified results without extracting and indexing anything. It's intended for use by developers and data scientists who want to solve multi-silo search problems from enterprise search to new monitoring & alerting solutions that push information to users continuously. Built on the Python/Django/RabbitMQ stack, SWIRL includes connectors to Apache Solr, ChatGPT, Elastic, OpenSearch | PostgreSQL, Google BigQuery plus generic HTTP/GET/JSON with configurations for premium services.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Tencent-Hunyuan-Large

    Tencent-Hunyuan-Large

    Open-source large language model family from Tencent Hunyuan

    Tencent-Hunyuan-Large is the flagship open-source large language model family from Tencent Hunyuan, offering both pre-trained and instruct (fine-tuned) variants. It is designed with long-context capabilities, quantization support, and high performance on benchmarks across general reasoning, mathematics, language understanding, and Chinese / multilingual tasks. It aims to provide competitive capability with efficient deployment and inference. FP8 quantization support to reduce memory usage (~50%) while maintaining precision. High benchmarking performance on tasks like MMLU, MATH, CMMLU, C-Eval, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    ThoughtSource

    ThoughtSource

    A central, open resource for data and tools

    ThoughtSource is a central, open resource and community centered on data and tools for chain-of-thought reasoning in large language models (Wei 2022). Our long-term goal is to enable trustworthy and robust reasoning in advanced AI systems for driving scientific research and medical practice.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Unstructured.IO

    Unstructured.IO

    Open source libraries and APIs to build custom preprocessing pipelines

    The unstructured library provides open-source components for ingesting and pre-processing images and text documents, such as PDFs, HTML, Word docs, and many more. The use cases of unstructured revolve around streamlining and optimizing the data processing workflow for LLMs. unstructured modular bricks and connectors form a cohesive system that simplifies data ingestion and pre-processing, making it adaptable to different platforms and is efficient in transforming unstructured data into structured outputs.
    Downloads: 0 This Week
    Last Update:
    See Project