Open Source Python Large Language Models (LLM) - Page 2

Python Large Language Models (LLM)

View 320 business solutions

Browse free open source Python Large Language Models (LLM) and projects below. Use the toggles on the left to filter open source Python Large Language Models (LLM) by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Stay in Flow. Let Zenflow Handle the Heavy Lifting. Icon
    Stay in Flow. Let Zenflow Handle the Heavy Lifting.

    Your AI engineering control center. Zenflow turns specs into shipped features using parallel agents and multi-repo intelligence.

    Zenflow is your engineering control center, turning specs into shipped features. Parallel agents handle coding, testing, and refactoring with real repo context. Multi-agent workflows remove bottlenecks and automate routine work so developers stay focused and in flow.
    Try free now
  • 1
    Qwen3-Omni

    Qwen3-Omni

    Qwen3-omni is a natively end-to-end, omni-modal LLM

    Qwen3-Omni is a natively end-to-end multilingual omni-modal foundation model that processes text, images, audio, and video and delivers real-time streaming responses in text and natural speech. It uses a Thinker-Talker architecture with a Mixture-of-Experts (MoE) design, early text-first pretraining, and mixed multimodal training to support strong performance across all modalities without sacrificing text or image quality. The model supports 119 text languages, 19 speech input languages, and 10 speech output languages. It achieves state-of-the-art results: across 36 audio and audio-visual benchmarks, it hits open-source SOTA on 32 and overall SOTA on 22, outperforming or matching strong closed-source models such as Gemini-2.5 Pro and GPT-4o. To reduce latency, especially in audio/video streaming, Talker predicts discrete speech codecs via a multi-codebook scheme and replaces heavier diffusion approaches.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    ChatGLM-6B

    ChatGLM-6B

    ChatGLM-6B: An Open Bilingual Dialogue Language Model

    ChatGLM-6B is an open bilingual (Chinese + English) conversational language model based on the GLM architecture, with approximately 6.2 billion parameters. The project provides inference code, demos (command line, web, API), quantization support for lower memory deployment, and tools for finetuning (e.g., via P-Tuning v2). It is optimized for dialogue and question answering with a balance between performance and deployability in consumer hardware settings. Support for quantized inference (INT4, INT8) to reduce GPU memory requirements. Automatic mode switching between precision/memory tradeoffs (full/quantized).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    DB-GPT

    DB-GPT

    Revolutionizing Database Interactions with Private LLM Technology

    DB-GPT is an experimental open-source project that uses localized GPT large models to interact with your data and environment. With this solution, you can be assured that there is no risk of data leakage, and your data is 100% private and secure.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very inefficient at those scales. This, as well as the fact that many GPUs became available to us, among other things, prompted us to move development over to GPT-NeoX. All evaluations were done using our evaluation harness. Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Gorilla

    Gorilla

    Gorilla: An API store for LLMs

    Gorilla is Apache 2.0 With Gorilla being fine-tuned on MPT, and Falcon, you can use Gorilla commercially with no obligations. Gorilla enables LLMs to use tools by invoking APIs. Given a natural language query, Gorilla comes up with the semantically- and syntactically- correct API to invoke. With Gorilla, we are the first to demonstrate how to use LLMs to invoke 1,600+ (and growing) API calls accurately while reducing hallucination. We also release APIBench, the largest collection of APIs, curated and easy to be trained on! Join us, as we try to expand the largest API store and teach LLMs how to write them! Hop on our Discord, or open a PR, or email us if you would like to have your API incorporated as well.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    Khoj

    Khoj

    An AI personal assistant for your digital brain

    Get more done with your open-source AI personal assistant. Khoj is a desktop application to search and chat with your notes, documents, and images. It is an offline-first, open-source AI personal assistant that is accessible from Emacs, Obsidian or your Web browser. Khoj is a thinking tool that is transparent, fun, and easy to engage with. You can build faster and better by using Khoj to search and reason across all your data sources. Khoj learns from your notes and documents to function as an extension of your brain. So that you can stay focused on doing what matters. Khoj started with the founding principle that a personal assistant be understandable, accessible and hackable. This means you can always customize and self-host your Khoj on your own machines.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    LangChain

    LangChain

    ⚡ Building applications with LLMs through composability ⚡

    Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. But using these LLMs in isolation is often not enough to create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge. This library is aimed at assisting in the development of those types of applications.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    LangChain-Chatchat

    LangChain-Chatchat

    Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge

    LangChain-Chatchat (formerly Langchain-ChatGLM): A local knowledge base question answering application implementation based on large language models such as Langchain and ChatGLM. The knowledge base information of the current project is stored in the database, please initialize the database before running the project officially (we strongly recommend that you back up your knowledge files before performing operations). Relying on the open-source LLM and Embedding models supported by this project, this project can realize offline private deployment using all open-source models. At the same time, this project also supports the call of OpenAI GPT API, and will continue to expand the access to various models and model APIs in the future.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    OpenDAN

    OpenDAN

    OpenDAN is an open source Personal AI OS

    OpenDAN is an open-source Personal AI OS , that consolidates various AI modules in one place for your personal use. The goal of OpenDAN (Open and Do Anything Now with AI) is to create a Personal AI OS , which provides a runtime environment for various Al modules as well as protocols for interoperability between them. With OpenDAN, users can securely collaborate with various AI modules using their private data to create powerful personal AI agents, such as butlers, lawyers, doctors, teachers, assistants, girl or boyfriends.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    OpenLLM

    OpenLLM

    Operating LLMs in production

    An open platform for operating large language models (LLMs) in production. Fine-tune, serve, deploy, and monitor any LLMs with ease. With OpenLLM, you can run inference with any open-source large-language models, deploy to the cloud or on-premises, and build powerful AI apps. Built-in supports a wide range of open-source LLMs and model runtime, including Llama 2, StableLM, Falcon, Dolly, Flan-T5, ChatGLM, StarCoder, and more. Serve LLMs over RESTful API or gRPC with one command, query via WebUI, CLI, our Python/Javascript client, or any HTTP client.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    STORM

    STORM

    An LLM-powered knowledge curation system that researches topics

    STORM is an open-source virtual assistant framework developed by Stanford's OVAL lab. It is designed for creating natural language interfaces and assistants that can interact with APIs, databases, and services in a modular way.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    CogVLM

    CogVLM

    A state-of-the-art open visual language model

    CogVLM is an open-source visual–language model suite—and its GUI-oriented sibling CogAgent—aimed at image understanding, grounding, and multi-turn dialogue, with optional agent actions on real UI screenshots. The flagship CogVLM-17B combines ~10B visual parameters with ~7B language parameters and supports 490×490 inputs; CogAgent-18B extends this to 1120×1120 and adds plan/next-action outputs plus grounded operation coordinates for GUI tasks. The repo provides multiple ways to run models (CLI, web demo, and OpenAI-Vision–style APIs), along with quantization options that reduce VRAM needs (e.g., 4-bit). It includes checkpoints for chat, base, and grounding variants, plus recipes for model-parallel inference and LoRA fine-tuning. The documentation covers task prompts for general dialogue, visual grounding (box→caption, caption→box, caption+boxes), and GUI agent workflows that produce structured actions with bounding boxes.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    H2O LLM Studio

    H2O LLM Studio

    Framework and no-code GUI for fine-tuning LLMs

    Welcome to H2O LLM Studio, a framework and no-code GUI designed for fine-tuning state-of-the-art large language models (LLMs). You can also use H2O LLM Studio with the command line interface (CLI) and specify the configuration file that contains all the experiment parameters. To finetune using H2O LLM Studio with CLI, activate the pipenv environment by running make shell. With H2O LLM Studio, training your large language model is easy and intuitive. First, upload your dataset and then start training your model. Start by creating an experiment. You can then monitor and manage your experiment, compare experiments, or push the model to Hugging Face to share it with the community.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    LLaMA-Factory

    LLaMA-Factory

    Unified Efficient Fine-Tuning of 100+ LLMs & VLMs (ACL 2024)

    LLaMA-Factory is a fine-tuning and training framework for Meta's LLaMA language models. It enables researchers and developers to train and customize LLaMA models efficiently using advanced optimization techniques.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    MobileLLM

    MobileLLM

    MobileLLM Optimizing Sub-billion Parameter Language Models

    MobileLLM is a lightweight large language model (LLM) framework developed by Facebook Research, optimized for on-device deployment where computational and memory efficiency are critical. Introduced in the ICML 2024 paper “MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases”, it focuses on delivering strong reasoning and generalization capabilities in models under one billion parameters. The framework integrates several architectural innovations—SwiGLU activation, deep and thin network design, embedding sharing, and grouped-query attention (GQA)—to achieve a superior trade-off between model size, inference speed, and accuracy. MobileLLM demonstrates remarkable performance, with the 125M and 350M variants outperforming previous state-of-the-art models of the same scale by up to 4.3% on zero-shot commonsense reasoning tasks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Mosec

    Mosec

    A high-performance ML model serving framework, offers dynamic batching

    Mosec is a high-performance and flexible model-serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and the efficient online service API.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    Qwen-2.5-VL

    Qwen-2.5-VL

    Qwen2.5-VL is the multimodal large language model series

    Qwen2.5 is a series of large language models developed by the Qwen team at Alibaba Cloud, designed to enhance natural language understanding and generation across multiple languages. The models are available in various sizes, including 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B parameters, catering to diverse computational requirements. Trained on a comprehensive dataset of up to 18 trillion tokens, Qwen2.5 models exhibit significant improvements in instruction following, long-text generation (exceeding 8,000 tokens), and structured data comprehension, such as tables and JSON formats. They support context lengths up to 128,000 tokens and offer multilingual capabilities in over 29 languages, including Chinese, English, French, Spanish, and more. The models are open-source under the Apache 2.0 license, with resources and documentation available on platforms like Hugging Face and ModelScope.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    Ring

    Ring

    Ring is a reasoning MoE LLM provided and open-sourced by InclusionAI

    Ring is a reasoning Mixture-of-Experts (MoE) large language model (LLM) developed by inclusionAI. It is built from or derived from Ling. Its design emphasizes reasoning, efficiency, and modular expert activation. In its “flash” variant (Ring-flash-2.0), it optimizes inference by activating only a subset of experts. It applies reinforcement learning/reasoning optimization techniques. Its architectures and training approaches are tuned to enable efficient and capable reasoning performance. Reasoning-optimized model with reinforcement learning enhancements. Efficient architecture and memory design for large-scale reasoning. If you are located in mainland China, we also provide the model on ModelScope.cn to speed up the download process.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    Tongyi DeepResearch

    Tongyi DeepResearch

    Tongyi Deep Research, the Leading Open-source Deep Research Agent

    DeepResearch (Tongyi DeepResearch) is an open-source “deep research agent” developed by Alibaba’s Tongyi Lab designed for long-horizon, information-seeking tasks. It’s built to act like a research agent: synthesizing, reasoning, retrieving information via the web and documents, and backing its outputs with evidence. The model is about 30.5 billion parameters in size, though at any given token only ~3.3B parameters are active. It uses a mix of synthetic data generation, fine-tuning and reinforcement learning; supports benchmarks like web search, document understanding, question answering, “agentic” tasks; provides inference tools, evaluation scripts, and “web agent” style interfaces. The aim is to enable more autonomous, agentic models that can perform sustained knowledge gathering, reasoning, and synthesis across multiple modalities (web, files, etc.).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    VisualGLM-6B

    VisualGLM-6B

    Chinese and English multimodal conversational language model

    VisualGLM-6B is an open-source multimodal conversational language model developed by ZhipuAI that supports both images and text in Chinese and English. It builds on the ChatGLM-6B backbone, with 6.2 billion language parameters, and incorporates a BLIP2-Qformer visual module to connect vision and language. In total, the model has 7.8 billion parameters. Trained on a large bilingual dataset — including 30 million high-quality Chinese image-text pairs from CogView and 300 million English pairs — VisualGLM-6B is designed for image understanding, description, and question answering. Fine-tuning on long visual QA datasets further aligns the model’s responses with human preferences. The repository provides inference APIs, command-line demos, web demos, and efficient fine-tuning options like LoRA, QLoRA, and P-tuning. It also supports quantization down to INT4, enabling local deployment on consumer GPUs with as little as 6.3 GB VRAM.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Automated Interpretability

    Automated Interpretability

    Code for Language models can explain neurons in language models paper

    The automated-interpretability repository implements tools and pipelines for automatically generating, simulating, and scoring explanations of neuron (or latent feature) behavior in neural networks. Instead of relying purely on manual, ad hoc interpretability probing, this repo aims to scale interpretability by using algorithmic methods that produce candidate explanations and assess their quality. It includes a “neuron explainer” component that, given a target neuron or latent feature, proposes natural language explanations or heuristics (e.g. “this neuron activates when the input has property X”) and then simulates activation behavior across example inputs to test whether the explanation holds. The project also contains a “neuron viewer” web component for browsing neurons, explanations, and activation patterns, making it more interactive and exploratory.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    BISHENG

    BISHENG

    BISHENG is an open LLM devops platform for next generation apps

    BISHENG is an open LLM application DevOps platform, focusing on enterprise scenarios. It has been used by a large number of industry-leading organizations and Fortune 500 companies. "Bi Sheng" was the inventor of movable type printing, which played a vital role in promoting the transmission of human knowledge. We hope that BISHENG can also provide strong support for the widespread implementation of intelligent applications. Everyone is welcome to participate.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    ChatGLM2-6B

    ChatGLM2-6B

    ChatGLM2-6B: An Open Bilingual Chat LLM

    ChatGLM2-6B is the second-gen Chinese-English conversational LLM from ZhipuAI/Tsinghua. It upgrades the base model with GLM’s hybrid pretraining objective, 1.4 TB bilingual data, and preference alignment—delivering big gains on MMLU, CEval, GSM8K, and BBH. The context window extends up to 32K (FlashAttention), and Multi-Query Attention improves speed and memory use. The repo includes Python APIs, CLI & web demos, OpenAI-style/FASTAPI servers, and quantized checkpoints for lightweight local deployment on GPUs or CPU/MPS.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Code World Model (CWM)

    Code World Model (CWM)

    Research code artifacts for Code World Model (CWM)

    CWM (Code World Model) is a 32-billion-parameter open-weights language model. It is developed by Meta for enhancing code generation and reasoning about programs. It is explicitly trained on execution traces, action-observation trajectories, and agentic interactions in controlled environments. It has been developed to better capture how code, actions, and state interact over time. The repository provides inference code, reproducibility scripts, prompt guides, and more. It has model cards, utilities, demos, and evaluation artifacts. Inference scripts and utilities for code generation tasks. Evaluation benchmarks on code, mathematics, and reasoning tasks. Demos, serving code, and evaluation pipelines.
    Downloads: 1 This Week
    Last Update:
    See Project