Open Source Python Large Language Models (LLM)

Python Large Language Models (LLM)

View 264 business solutions

Browse free open source Python Large Language Models (LLM) and projects below. Use the toggles on the left to filter open source Python Large Language Models (LLM) by OS, license, language, programming language, and project status.

  • Simplify IT and security with a single endpoint management platform Icon
    Simplify IT and security with a single endpoint management platform

    Automate the hardest parts of IT

    NinjaOne automates the hardest parts of IT, delivering visibility, security, and control over all endpoints for more than 20,000 customers. The NinjaOne automated endpoint management platform is proven to increase productivity, reduce security risk, and lower costs for IT teams and managed service providers. The company seamlessly integrates with a wide range of IT and security technologies. NinjaOne is obsessed with customer success and provides free and unlimited onboarding, training, and support.
    Learn More
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    GPT4All

    GPT4All

    Run Local LLMs on Any Device. Open-source

    GPT4All is an open-source project that allows users to run large language models (LLMs) locally on their desktops or laptops, eliminating the need for API calls or GPUs. The software provides a simple, user-friendly application that can be downloaded and run on various platforms, including Windows, macOS, and Ubuntu, without requiring specialized hardware. It integrates with the llama.cpp implementation and supports multiple LLMs, allowing users to interact with AI models privately. This project also supports Python integrations for easy automation and customization. GPT4All is ideal for individuals and businesses seeking private, offline access to powerful LLMs.
    Downloads: 86 This Week
    Last Update:
    See Project
  • 2
    llama.cpp Python Bindings

    llama.cpp Python Bindings

    Python bindings for llama.cpp

    llama-cpp-python provides Python bindings for llama.cpp, enabling the integration of LLaMA (Large Language Model Meta AI) language models into Python applications. This facilitates the use of LLaMA's capabilities in natural language processing tasks within Python environments.
    Downloads: 32 This Week
    Last Update:
    See Project
  • 3
    vLLM

    vLLM

    A high-throughput and memory-efficient inference and serving engine

    vLLM is a fast and easy-to-use library for LLM inference and serving. High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more.
    Downloads: 29 This Week
    Last Update:
    See Project
  • 4
    Deep Lake

    Deep Lake

    Data Lake for Deep Learning. Build, manage, and query datasets

    Deep Lake (formerly known as Activeloop Hub) is a data lake for deep learning applications. Our open-source dataset format is optimized for rapid streaming and querying of data while training models at scale, and it includes a simple API for creating, storing, and collaborating on AI datasets of any size. It can be deployed locally or in the cloud, and it enables you to store all of your data in one place, ranging from simple annotations to large videos. Deep Lake is used by Google, Waymo, Red Cross, Omdena, Yale, & Oxford. Use one API to upload, download, and stream datasets to/from AWS S3/S3-compatible storage, GCP, Activeloop cloud, or local storage. Store images, audios and videos in their native compression. Deeplake automatically decompresses them to raw data only when needed, e.g., when training a model. Treat your cloud datasets as if they are a collection of NumPy arrays in your system's memory. Slice them, index them, or iterate through them.
    Downloads: 21 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we recommend Mesh Transformer JAX. If you are not looking to train models with billions of parameters from scratch, this is likely the wrong library to use. For generic inference needs, we recommend you use the Hugging Face transformers library instead which supports GPT-NeoX models.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 6
    Guidance

    Guidance

    A guidance language for controlling large language models

    Guidance is an efficient programming paradigm for steering language models. With Guidance, you can control how output is structured and get high-quality output for your use case—while reducing latency and cost vs. conventional prompting or fine-tuning. It allows users to constrain generation (e.g. with regex and CFGs) as well as to interleave control (conditionals, loops, tool use) and generation seamlessly.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 7
    LiteLLM

    LiteLLM

    lightweight package to simplify LLM API calls

    Call all LLM APIs using the OpenAI format [Anthropic, Huggingface, Cohere, Azure OpenAI etc.] liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response. Streaming is supported for OpenAI, Azure, Anthropic, and Huggingface models.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 8
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. VALL-E emerges in-context learning capabilities and can be used to synthesize high-quality personalized speech with only a 3-second enrolled recording of an unseen speaker as an acoustic prompt. Experiment results show that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system in terms of speech naturalness and speaker similarity. In addition, we find VALL-E could preserve the speaker's emotion and acoustic environment of the acoustic prompt in synthesis.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 9
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very inefficient at those scales. This, as well as the fact that many GPUs became available to us, among other things, prompted us to move development over to GPT-NeoX. All evaluations were done using our evaluation harness. Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness.
    Downloads: 9 This Week
    Last Update:
    See Project
  • MongoDB 8.0 on Atlas | Run anywhere Icon
    MongoDB 8.0 on Atlas | Run anywhere

    Now available in even more cloud regions across AWS, Azure, and Google Cloud.

    MongoDB 8.0 brings enhanced performance and flexibility to Atlas—with expanded availability across 125+ regions globally. Build modern apps anywhere your users are, with the power of a modern database behind you.
    Learn More
  • 10
    GraphRAG

    GraphRAG

    A modular graph-based Retrieval-Augmented Generation (RAG) system

    The GraphRAG project is a data pipeline and transformation suite that is designed to extract meaningful, structured data from unstructured text using the power of LLMs.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 11
    LLaMA-Factory

    LLaMA-Factory

    Unified Efficient Fine-Tuning of 100+ LLMs & VLMs (ACL 2024)

    LLaMA-Factory is a fine-tuning and training framework for Meta's LLaMA language models. It enables researchers and developers to train and customize LLaMA models efficiently using advanced optimization techniques.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 12
    Mosec

    Mosec

    A high-performance ML model serving framework, offers dynamic batching

    Mosec is a high-performance and flexible model-serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and the efficient online service API.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 13
    DB-GPT

    DB-GPT

    Revolutionizing Database Interactions with Private LLM Technology

    DB-GPT is an experimental open-source project that uses localized GPT large models to interact with your data and environment. With this solution, you can be assured that there is no risk of data leakage, and your data is 100% private and secure.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 14
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node mixed-precision training. Supported models: Jasper, QuartzNet, CitriNet, Conformer-CTC, Conformer-Transducer, Squeezeformer-CTC, Squeezeformer-Transducer, ContextNet, LSTM-Transducer (RNNT), LSTM-CTC. NGC collection of pre-trained speech processing models.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 15
    Super Easy AI Installer Tool

    Super Easy AI Installer Tool

    Application that simplifies the installation of AI-related projects

    "Super Easy AI Installer Tool" is a user-friendly application that simplifies the installation process of AI-related repositories for users. The tool is designed to provide an easy-to-use solution for accessing and installing AI repositories with minimal technical hassle to none the tool will automatically handle the installation process, making it easier for users to access and use AI tools. "Super Easy AI Installer Tool" is currently in early development phase and may have a few bugs. But remains a great solution for users with minimal technical knowledge or expertise. Fixes underway. A tool that can generate animations and music from text, ideal for producing short videos and GIFs, as well as creating brief cinematic scenes.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 16
    Swirl

    Swirl

    Swirl queries any number of data sources with APIs

    Swirl queries any number of data sources with APIs and uses spaCy and NLTK to re-rank the unified results without extracting and indexing anything! Includes zero-code configs for Apache Solr, ChatGPT, Elastic Search, OpenSearch, PostgreSQL, Google BigQuery, RequestsGet, Google PSE, NLResearch.com, Miro & more! SWIRL adapts and distributes queries to anything with a search API - search engines, databases, noSQL engines, cloud/SaaS services etc - and uses AI (Large Language Models) to re-rank the unified results without extracting and indexing anything. It's intended for use by developers and data scientists who want to solve multi-silo search problems from enterprise search to new monitoring & alerting solutions that push information to users continuously. Built on the Python/Django/RabbitMQ stack, SWIRL includes connectors to Apache Solr, ChatGPT, Elastic, OpenSearch | PostgreSQL, Google BigQuery plus generic HTTP/GET/JSON with configurations for premium services.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 17
    Mirascope

    Mirascope

    LLM abstractions that aren't obstructions

    Mirascope is a powerful, flexible, and user-friendly library that simplifies the process of working with LLMs through a unified interface that works across various supported providers, including OpenAI, Anthropic, Mistral, Gemini, Groq, Cohere, LiteLLM, Azure AI, Vertex AI, and Bedrock. Whether you're generating text, extracting structured information, or developing complex AI-driven agent systems, Mirascope provides the tools you need to streamline your development process and create powerful, robust applications.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 18
    LLaMA Efficient Tuning

    LLaMA Efficient Tuning

    Easy-to-use LLM fine-tuning framework (LLaMA-2, BLOOM, Falcon

    Easy-to-use LLM fine-tuning framework (LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, ChatGLM2)
    Downloads: 5 This Week
    Last Update:
    See Project
  • 19
    EvaDB

    EvaDB

    Database system for building simpler and faster AI-powered application

    Over the last decade, AI models have radically changed the world of natural language processing and computer vision. They are accurate on various tasks ranging from question answering to object tracking in videos. To use an AI model, the user needs to program against multiple low-level libraries, like PyTorch, Hugging Face, Open AI, etc. This tedious process often leads to a complex AI app that glues together these libraries to accomplish the given task. This programming complexity prevents people who are experts in other domains from benefiting from these models. Running these deep learning models on large document or video datasets is costly and time-consuming. For example, the state-of-the-art object detection model takes multiple GPU years to process just a week’s videos from a single traffic monitoring camera. Besides the money spent on hardware, these models also increase the time that you spend waiting for the model inference to finish.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    Khoj

    Khoj

    An AI personal assistant for your digital brain

    Get more done with your open-source AI personal assistant. Khoj is a desktop application to search and chat with your notes, documents, and images. It is an offline-first, open-source AI personal assistant that is accessible from Emacs, Obsidian or your Web browser. Khoj is a thinking tool that is transparent, fun, and easy to engage with. You can build faster and better by using Khoj to search and reason across all your data sources. Khoj learns from your notes and documents to function as an extension of your brain. So that you can stay focused on doing what matters. Khoj started with the founding principle that a personal assistant be understandable, accessible and hackable. This means you can always customize and self-host your Khoj on your own machines.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    LLaVA

    LLaVA

    Visual Instruction Tuning: Large Language-and-Vision Assistant

    Visual instruction tuning towards large language and vision models with GPT-4 level capabilities.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    MedicalGPT

    MedicalGPT

    MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training

    MedicalGPT training medical GPT model with ChatGPT training pipeline, implementation of Pretraining, Supervised Finetuning, Reward Modeling and Reinforcement Learning. MedicalGPT trains large medical models, including secondary pre-training, supervised fine-tuning, reward modeling, and reinforcement learning training.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely integrates large-scale reinforcement learning (RL) without relying on supervised fine-tuning, enabling the model to develop advanced reasoning capabilities. This approach has resulted in performance comparable to leading models like OpenAI's o1, while maintaining cost-efficiency. To further support the research community, DeepSeek has released distilled versions of the model based on architectures such as LLaMA and Qwen. This is a full repo snapshot ZIP file of the DeepSeek R1 code.
    Leader badge
    Downloads: 58 This Week
    Last Update:
    See Project
  • 24
    LlamaIndex

    LlamaIndex

    Central interface to connect your LLM's with external data

    LlamaIndex (GPT Index) is a project that provides a central interface to connect your LLM's with external data. LlamaIndex is a simple, flexible interface between your external data and LLMs. It provides the following tools in an easy-to-use fashion.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    Megatron

    Megatron

    Ongoing research training transformer models at scale

    Megatron is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel (tensor, sequence, and pipeline), and multi-node pre-training of transformer based models such as GPT, BERT, and T5 using mixed precision. Megatron is also used in NeMo Megatron, a framework to help enterprises overcome the challenges of building and training sophisticated natural language processing models with billions and trillions of parameters. Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.