Showing 13 open source projects for "gpu processing"

View related business solutions
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 1
    TorchQuantum

    TorchQuantum

    A PyTorch-based framework for Quantum Classical Simulation

    ...Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, and quantum neural networks. Dynamic computation graph, automatic gradient computation, fast GPU support, batch model terrorized processing.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    BentoML

    BentoML

    Unified Model Serving Framework

    ...Orchestrate distributed inference graph with multiple models via Yatai on Kubernetes. Easily configure CUDA dependencies for running inference with GPU. Automatically generate docker images for production deployment.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    Nuclio

    Nuclio

    High-Performance Serverless event and data processing platform

    Nuclio is an open source and managed serverless platform used to minimize development and maintenance overhead and automate the deployment of data-science-based applications. Real-time performance running up to 400,000 function invocations per second. Portable across low laptops, edge, on-prem and multi-cloud deployments. The first serverless platform supporting GPUs for optimized utilization and sharing. Automated deployment to production in a few clicks from Jupyter notebook. Deploy one of...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    MetalPetal

    MetalPetal

    A GPU accelerated image and video processing framework built on Metal

    MetalPetal is an image processing framework based on Metal designed to provide real-time processing for still images and video with easy-to-use programming interfaces. This chapter covers the key concepts of MetalPetal, and will help you to get a better understanding of its design, implementation, performance implications, and best practices. A MTIImage object is a representation of an image to be processed or produced. It does directly represent image bitmap data instead it has all the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    PyText

    PyText

    A natural language modeling framework based on PyTorch

    PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapid experimentation and of serving models at scale. It achieves this by providing simple and extensible interfaces and abstractions for model components, and by using PyTorch’s capabilities of exporting models for inference via the optimized Caffe2 execution engine. We use PyText at Facebook to iterate quickly on new modeling ideas and then seamlessly...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    GPUImage 2

    GPUImage 2

    Framework for GPU-accelerated video and image processing

    GPUImage 2 is the second generation of the GPUImage framework, an open source project for performing GPU-accelerated image and video processing on Mac, iOS, and now Linux. The original GPUImage framework was written in Objective-C and targeted Mac and iOS, but this latest version is written entirely in Swift and can also target Linux and future platforms that support Swift code. The objective of the framework is to make it as easy as possible to set up and perform realtime video processing or machine vision against image or video sources. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    GPU,  a Global Processing Unit

    GPU, a Global Processing Unit

    A framework for distributed computing

    An extensible framework for distributed computing on P2P grids. We support peaceful free and open research and build an internet supercomputer. We render movies, solve Eternity puzzles, predict climate and improve a ~30 GHz cluster of clients.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 10
    Starling Filters

    Starling Filters

    A collection of filters for use with the Starling AS3 framework

    Starling-Filters is an open-source collection of filter effects for the Starling AS3 framework. These filters allow developers using Starling (a GPU accelerated 2D rendering framework in Flash/AIR) to apply image processing / visual effects (e.g. blur, glow, etc.) in their Starling-based applications. The repo has versions for Starling 2.0 (on master) and older filters archived for Starling 1.x. A collection of filters for use with the Starling AS3 framework. The master branch contains filters for use with Starling 2.0.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Caffe

    Caffe

    A fast open framework for deep learning

    ...It’s got an expressive architecture that encourages application and innovation, and extensible code that’s great for active development. Caffe also offers great speed, capable of processing over 60M images per day with a single NVIDIA K40 GPU. It’s arguably one of the fastest convnet implementations around. Caffe is developed by the Berkeley AI Research (BAIR)/The Berkeley Vision and Learning Center (BVLC) and a great community of contributors that continue to make Caffe state-of-the-art in both code and models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    ND2D

    ND2D

    A Flash Molehill (Stage3D) GPU accelerated 2D game engine

    ND2D is a 2D game framework for Flash that uses Stage3D / Molehill (i.e. the GPU acceleration in newer Flash Player versions). It allows game developers to build 2D games with lots of sprites, leveraging GPU for better performance. It includes display tree constructs, sprite sheets, particle systems, cameras, post-processing etc., made to simplify building high-performance 2D content in Flash. ND2D was built to make an ease use of hardware accelerated 2D content in the Flashplayer. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    HIPAcc

    HIPAcc

    Heterogeneous Image Processing Acceleration (HIPACC) Framework

    HIPAcc development has moved to github: https://github.com/hipacc HIPAcc allows to design image processing kernels and algorithms in a domain-specific language (DSL). From this high-level description, low-level target code for GPU accelerators is generated using source-to-source translation. As back ends, the framework supports CUDA, OpenCL, and Renderscript. HIPAcc allows programmers to develop imaging applications while providing high productivity, flexibility and portability as well as competitive performance: the same algorithm description serves as basis for targeting different GPU accelerators and low-level languages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next