32 projects for "machine learning python" with 2 filters applied:

  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    Kedro

    Kedro

    A Python framework for creating reproducible, maintainable code

    Kedro is an open sourced Python framework for creating maintainable and modular data science code. Provides the scaffolding to build more complex data and machine-learning pipelines. In addition, there's a focus on spending less time on the tedious "plumbing" required to maintain data science code; this means that you have more time to solve new problems. Standardises team workflows; the modular structure of Kedro facilitates a higher level of collaboration when teams solve problems together. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    TorchQuantum

    TorchQuantum

    A PyTorch-based framework for Quantum Classical Simulation

    A PyTorch-based framework for Quantum Classical Simulation, Quantum Machine Learning, Quantum Neural Networks, Parameterized Quantum Circuits with support for easy deployments on real quantum computers. Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, and quantum neural networks. Dynamic computation graph, automatic gradient computation, fast GPU support, batch model terrorized processing.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    MLJ

    MLJ

    A Julia machine learning framework

    MLJ (Machine Learning in Julia) is a toolbox written in Julia providing a common interface and meta-algorithms for selecting, tuning, evaluating, composing and comparing about 200 machine learning models written in Julia and other languages. The functionality of MLJ is distributed over several repositories illustrated in the dependency chart below.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Apache Spark

    Apache Spark

    A unified analytics engine for large-scale data processing

    ...With Spark Streaming (microbatches) and Structured Streaming, it delivers low-latency event processing suitable for real-time analytics. The built-in MLlib library provides scalable machine learning algorithms, while GraphX enables graph computations integrated with data pipelines. Spark supports multiple languages—Scala, Java, Python, R—and connects with many storage systems like HDFS, S3, Cassandra, and streaming platforms like Kafka, making it a versatile choice for big data workloads in analytics, ETL, and data science.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    MLJBase.jl

    MLJBase.jl

    Core functionality for the MLJ machine learning framework

    Repository for developers that provides core functionality for the MLJ machine learning framework. MLJ is a Julia framework for combining and tuning machine learning models. This repository provides core functionality for MLJ.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    tinygrad

    tinygrad

    Deep learning framework

    This may not be the best deep learning framework, but it is a deep learning framework. Due to its extreme simplicity, it aims to be the easiest framework to add new accelerators to, with support for both inference and training. If XLA is CISC, tinygrad is RISC.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Optuna

    Optuna

    A hyperparameter optimization framework

    Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API. Thanks to our define-by-run API, the code written with Optuna enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters. Optuna Dashboard is a real-time web dashboard for Optuna. You can check the optimization history, hyperparameter importances, etc. in graphs and tables. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Superduper

    Superduper

    Superduper: Integrate AI models and machine learning workflows

    Superduper is a Python-based framework for building end-2-end AI-data workflows and applications on your own data, integrating with major databases. It supports the latest technologies and techniques, including LLMs, vector-search, RAG, and multimodality as well as classical AI and ML paradigms. Developers may leverage Superduper by building compositional and declarative objects that out-source the details of deployment, orchestration versioning, and more to the Superduper engine. This...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    Towhee is an open-source machine-learning pipeline that helps you encode your unstructured data into embeddings. You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Business Automation Software for SMBs Icon
    Business Automation Software for SMBs

    Fed up with not having the time, money and resources to grow your business?

    The only software you need to increase cash flow, optimize resource utilization, and take control of your assets and inventory.
    Learn More
  • 10
    Apache Flink

    Apache Flink

    Stream processing framework with powerful stream

    ...Developers program against high-level APIs—DataStream and Table/SQL—to express transformations, joins, and stateful patterns, while specialized libraries support CEP, machine learning workflows, and connectors. A rich connector ecosystem integrates with systems like Kafka, Kinesis, filesystems, JDBC sources/sinks, and object stores. Deployments span Kubernetes, YARN, Mesos, and standalone clusters, and operational features such as savepoints, state backends, and metrics make long-running jobs manageable in production.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    OpenManus

    OpenManus

    No fortress, purely open ground. OpenManus is Coming

    OpenManus is an open‑agent AI framework focused on building versatile general-purpose agents capable of autonomously executing complex workflows — such as planning, browsing, tool invocation — all via a pluggable prompts and tools interface. It's being extended with reinforcement learning‑based tuning modules and designed for researchers and developers building custom AI agents.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Argo Workflows

    Argo Workflows

    Workflow engine for Kubernetes

    ...Model multi-step workflows as a sequence of tasks or capture the dependencies between tasks using a directed acyclic graph (DAG). Easily run compute intensive jobs for machine learning or data processing in a fraction of the time using Argo Workflows on Kubernetes. Run CI/CD pipelines natively on Kubernetes without configuring complex software development products. Argo Workflows is the most popular workflow execution engine for Kubernetes. It can run 1000s of workflows a day, each with 1000s of concurrent tasks. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    spacy-transformers

    spacy-transformers

    Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy

    spaCy supports a number of transfer and multi-task learning workflows that can often help improve your pipeline’s efficiency or accuracy. Transfer learning refers to techniques such as word vector tables and language model pretraining. These techniques can be used to import knowledge from raw text into your pipeline, so that your models are able to generalize better from your annotated examples. You can convert word vectors from popular tools like FastText and Gensim, or you can load in any...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Netcap

    Netcap

    A framework for secure and scalable network traffic analysis

    The Netcap (NETwork CAPture) framework efficiently converts a stream of network packets into platform-neutral type-safe structured audit records that represent specific protocols or custom abstractions. These audit records can be stored on disk or exchanged over the network, and are well-suited as a data source for machine learning algorithms. Since parsing of untrusted input can be dangerous and network data is potentially malicious, a programming language that provides a garbage-collected memory-safe runtime is used for the implementation.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    KubeEdge

    KubeEdge

    Kubernetes Native Edge Computing Framework (project under CNCF)

    ...It consists of a cloud part and an edge part, and provides core infrastructure support for networking, application deployment, and metadata synchronization between the cloud and edge. It also supports MQTT which enables edge devices to access through edge nodes. With KubeEdge it is easy to get and deploy existing complicated machine learning, image recognition, event processing, and other high-level applications to the Edge. With business logic running at the Edge, much larger volumes of data can be secured & processed locally where the data is produced. With data processed at the Edge, the responsiveness is increased dramatically and data privacy is protected.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    stkpp

    stkpp

    C++ Statistical ToolKit

    STK++ (http://www.stkpp.org) is a versatile, fast, reliable and elegant collection of C++ classes for statistics, clustering, linear algebra, arrays (with an Eigen-like API), regression, dimension reduction, etc. Some functionalities provided by the library are available in the R environment as R functions (http://cran.at.r-project.org/web/packages/rtkore/index.html). At a convenience, we propose the source packages on sourceforge. The library offers a dense set of (mostly) template...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    KotlinDL

    KotlinDL

    High-level Deep Learning Framework written in Kotlin

    KotlinDL is a high-level Deep Learning API written in Kotlin and inspired by Keras. Under the hood, it uses TensorFlow Java API and ONNX Runtime API for Java. KotlinDL offers simple APIs for training deep learning models from scratch, importing existing Keras and ONNX models for inference, and leveraging transfer learning for tailoring existing pre-trained models to your tasks. This project aims to make Deep Learning easier for JVM and Android developers and simplify deploying deep learning...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    UnionML

    UnionML

    Build and deploy machine learning microservices

    Creating ML apps should be simple and frictionless. UnionML is an open-source Python framework built on top of Flyte™, unifying the complex ecosystem of ML tools into a single interface. Combine the tools that you love using a simple, standardized API so you can stop writing so much boilerplate and focus on what matters: the data and the models that learn from them. Fit the rich ecosystem of tools and frameworks into a common protocol for machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Kore

    Kore

    Scalable and secure web application framework

    Kore is a web application platform for writing scalable, concurrent web-based processes in C or Python. It is built with a "secure by default" approach. It is fully privileged separated while using strong security features at the operating system level such as second, pledge, unveil, and more. Today Kore is used in a variety of applications ranging from high assurance cryptographic military devices, machine-learning stacks and even in the aerospace industry.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Java Neural Network Framework Neuroph
    Neuroph is lightweight Java Neural Network Framework which can be used to develop common neural network architectures. Small number of basic classes which correspond to basic NN concepts, and GUI editor makes it easy to learn and use.
    Leader badge
    Downloads: 62 This Week
    Last Update:
    See Project
  • 21
    Gin Config

    Gin Config

    Gin provides a lightweight configuration framework for Python

    Gin Config is a lightweight and flexible configuration framework for Python built around dependency injection. It enables developers to manage complex parameter hierarchies—particularly common in machine learning experiments—without relying on boilerplate configuration classes or protos. By decorating functions and classes with @gin.configurable, Gin allows their parameters to be overridden using simple configuration files (.gin) or command-line bindings.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    seq2seq

    seq2seq

    A general-purpose encoder-decoder framework for Tensorflow

    seq2seq is an early, influential TensorFlow reference implementation for sequence-to-sequence learning with attention, covering tasks like neural machine translation, summarization, and dialogue. It packaged encoders, decoders, attention mechanisms, and beam search into a modular training and inference framework. The codebase showcased best practices for batching, bucketing by sequence length, and handling variable-length sequences efficiently on GPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    JCLTP

    A Java Class Library for Text Processing

    JCLTP is a class library designed for processing text. JCLTP is free, open source and developed with the Java programming language. JCLTP is distributed under the GNU license. It incorporates several technologies that enable process information while applying AI techniques, in order to build predictive models for text classification. Through a flexible structure of interfaces and classes, the opportunity to extend, adapt and add functionality JCLTP is provided. Thus, analysis of new types...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    SW Test Automation Framework
    The Software Testing Automation Framework (STAF) is a framework designed to improve the level of reuse and automation in test cases and test environments. The goal of STAF is to provide a complete end-to-end automation solution for testers.
    Leader badge
    Downloads: 65 This Week
    Last Update:
    See Project
  • 25

    JCLALwebservice

    Web service for JCLAL

    This work is part of the area of Artificial Intelligence, in particular in the field of machine learning. The web service is built to facilitate the use of JCLAL in applications developed in any programming language. Users should know only the basic format to send and receive requests.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next