Open Source Python Deep Learning Frameworks - Page 6

Python Deep Learning Frameworks

View 107 business solutions

Browse free open source Python Deep Learning Frameworks and projects below. Use the toggles on the left to filter open source Python Deep Learning Frameworks by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • 1
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and compare the results. Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research. T2T was developed by researchers and engineers in the Google Brain team and a community of users. It is now deprecated, we keep it running and welcome bug-fixes, but encourage users to use the successor library Trax.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    TensorFlow Course

    TensorFlow Course

    Simple and ready-to-use tutorials for TensorFlow

    This repository houses a highly popular (~16k stars) set of TensorFlow tutorials and example code aimed at beginners and intermediate users. It includes Jupyter notebooks and scripts that cover neural network fundamentals, model training, deployment, and more, with support for Google Colab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    TensorFlow Probability is a library for probabilistic reasoning and statistical analysis. TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU). It's for data scientists, statisticians, ML researchers, and practitioners who want to encode domain knowledge to understand data and make predictions. Since TFP inherits the benefits of TensorFlow, you can build, fit, and deploy a model using a single language throughout the lifecycle of model exploration and production. TFP is open source and available on GitHub. Tools to build deep probabilistic models, including probabilistic layers and a `JointDistribution` abstraction. Variational inference and Markov chain Monte Carlo. A wide selection of probability distributions and bijectors. Optimizers such as Nelder-Mead, BFGS, and SGLD.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    TensorFlow Ranking

    TensorFlow Ranking

    Learning to rank in TensorFlow

    TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform. Commonly used loss functions including pointwise, pairwise, and listwise losses. Commonly used ranking metrics like Mean Reciprocal Rank (MRR) and Normalized Discounted Cumulative Gain (NDCG). Multi-item (also known as groupwise) scoring functions. LambdaLoss implementation for direct ranking metric optimization. Unbiased Learning-to-Rank from biased feedback data. We envision that this library will provide a convenient open platform for hosting and advancing state-of-the-art ranking models based on deep learning techniques, and thus facilitate both academic research and industrial applications. We provide a demo, with no installation required, to get started on using TF-Ranking. This demo runs on a colaboratory notebook, an interactive Python environment. Using sparse features and embeddings in TF-Ranking.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Test your software product anywhere in the world Icon
    Test your software product anywhere in the world

    Get feedback from real people across 190+ countries with the devices, environments, and payment instruments you need for your perfect test.

    Global App Testing is a managed pool of freelancers used by Google, Meta, Microsoft, and other world-beating software companies.
    Try us today.
  • 5
    TensorFlow World

    TensorFlow World

    Simple and ready-to-use tutorials for TensorFlow

    This repository aims to provide simple and ready-to-use tutorials for TensorFlow. The explanations are present in the wiki associated with this repository. There are different motivations for this open source project. TensorFlow (as we write this document) is one of / the best deep learning frameworks available. The question that should be asked is why has this repository been created when there are so many other tutorials about TensorFlow available on the web? Deep Learning is in very high interest these days - there's a crucial need for rapid and optimized implementations of the algorithms and architectures. TensorFlow is designed to facilitate this goal. The strong advantage of TensorFlow is it flexibility in designing highly modular models which can also be a disadvantage for beginners since a lot of the pieces must be considered together when creating the model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    TensorLayer

    TensorLayer

    Deep learning and reinforcement learning library for scientists

    TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extensive collection of customizable neural layers to build advanced AI models quickly, based on this, the community open-sourced mass tutorials and applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. This project can also be found at OpenI and Gitee. 3.0.0 has been pre-released, the current version supports TensorFlow, MindSpore and PaddlePaddle (partial) as the backends, allowing users to run the code on different hardware like Nvidia-GPU and Huawei-Ascend. In the future, it will support TensorFlow, MindSpore, PaddlePaddle, PyTorch and other backends. TensorLayer has a high-level layer/model abstraction which is effortless to learn. You can learn how deep learning can benefit your AI tasks in minutes through the massive examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Tez

    Tez

    Tez is a super-simple and lightweight Trainer for PyTorch

    Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch. tez (तेज़ / تیز) means sharp, fast & active. This is a simple, to-the-point, library to make your PyTorch training easy. This library is in early-stage currently! So, there might be breaking changes. Currently, tez supports cpu, single gpu and multi-gpu & tpu training. More coming soon! Using tez is super-easy. We don't want you to be far away from pytorch. So, you do everything on your own and just use tez to make a few things simpler.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    The Deep Review

    The Deep Review

    A collaboratively written review paper on deep learning, genomics, etc

    This repository is home to the Deep Review, a review article on deep learning in precision medicine. The Deep Review is collaboratively written on GitHub using a tool called Manubot (see below). The project operates on an open contribution model, welcoming contributions from anyone. To see what's incoming, check the open pull requests. For project discussion and planning see the Issues. As of writing, we are aiming to publish an update of the deep review. We will continue to make project preprints available on bioRxiv or another preprint service and aim to continue publishing the finished reviews in a peer-reviewed venue as well. Like the initial release, we are planning for an open and collaborative effort. New contributors are welcome and will be listed as version 2.0 authors. Manubot is a system for writing scholarly manuscripts via GitHub. Manubot automates citations and references, versions manuscripts using git, and enables collaborative writing via GitHub.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    The Google Cloud Developer's Cheat Sheet

    The Google Cloud Developer's Cheat Sheet

    Cheat sheet for Google Cloud developers

    Every product in the Google Cloud family described in <=4 words (with liberal use of hyphens and slashes) by the Google Developer Relations Team. This list only includes products that are publicly available. There are several products in pre-release/private-alpha that will not be included until they go public beta or GA. Many of these products have a free tier. There is also a free trial that will enable you try almost everything. API platforms and ecosystems, developer and management tools, identity and security tools, gaming, networking, data and analytics tools, database, storage, gaming tools, and many more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Ultimate Quiz Maker & Engagement Platform Icon
    The Ultimate Quiz Maker & Engagement Platform

    Powering publishers, brands, and sports teams with 30+ interactive content types. Maximize engagement and revenue with Riddle.

    Riddle is an online platform for creating interactive content such as quizzes, surveys, personality tests, prediction games, and leaderboards. Our customers create content on our platform and then embed it on their website. The goal? Increased engagement, lead generation, segmentation, and content monetization - all 100% GDPR compliant.
    Try for free
  • 10
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework. Switch between PyTorch, TensorFlow and MXNet models without changing your application, or even create mutant hybrids using zero-copy array interchange. Develop faster and catch bugs sooner with sophisticated type checking. Trying to pass a 1-dimensional array into a model that expects two dimensions? That’s a type error. Your editor can pick it up as the code leaves your fingers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Torchreid

    Torchreid

    Deep learning person re-identification in PyTorch

    Torchreid is a library for deep-learning person re-identification, written in PyTorch and developed for our ICCV’19 project, Omni-Scale Feature Learning for Person Re-Identification. In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. The folder "configs/" contains some predefined configs which you can use as a starting point. The code will automatically (download and) load the ImageNet pretrained weights. After the training is done, the model will be saved as "log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250". Under the same folder, you can find the tensorboard file. Different from the same-domain setting, here we replace random_erase with color_jitter. This can improve the generalization performance on the unseen target dataset.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    jieba

    jieba

    Stuttering Chinese word segmentation

    "Jaba" Chinese word segmentation, do the best Python Chinese word segmentation component. Four word segmentation modes are supported. Precise mode, which tries to cut the sentence most precisely, suitable for text analysis. Full mode, scans all the words that can be formed into words in the sentence, the speed is very fast, but the ambiguity cannot be resolved. The search engine mode, on the basis of the precise mode, divides the long words again to improve the recall rate, which is suitable for word segmentation in search engines. The paddle mode uses the PaddlePaddle deep learning framework to train the sequence labeling (bidirectional GRU) network model to achieve word segmentation. Also supports part-of-speech tagging. To use paddle mode, you need to install paddlepaddle-tiny, pip install paddlepaddle-tiny==1.6.1. Currently paddle mode supports jieba v0.40 and above. For versions below jieba v0.40, please upgrade jieba, pip install jieba --upgrade.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ktrain is a Python library that makes deep learning and AI more accessible and easier to apply. ktrain is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, ktrain is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines of code, ktrain allows you to easily and quickly. ktrain purposely pins to a lower version of transformers to include support for older versions of TensorFlow. If you need a newer version of transformers, it is usually safe for you to upgrade transformers, as long as you do it after installing ktrain. As of v0.30.x, TensorFlow installation is optional and only required if training neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    Pipeless is an open-source computer vision framework to create and deploy applications without the complexity of building and maintaining multimedia pipelines. It ships everything you need to create and deploy efficient computer vision applications that work in real-time in just minutes. Pipeless is inspired by modern serverless technologies. It provides the development experience of serverless frameworks applied to computer vision. You provide some functions that are executed for new video frames and Pipeless takes care of everything else. You can easily use industry-standard models, such as YOLO, or load your custom model in one of the supported inference runtimes. Pipeless ships some of the most popular inference runtimes, such as the ONNX Runtime, allowing you to run inference with high performance on CPU or GPU out-of-the-box. You can deploy your Pipeless application with a single command to edge and IoT devices or the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    stanford-tensorflow-tutorials

    stanford-tensorflow-tutorials

    This repository contains code examples for the Stanford's course

    This repository contains code examples for the course CS 20: TensorFlow for Deep Learning Research. It will be updated as the class progresses. Detailed syllabus and lecture notes can be found in the site. For this course, I use python3.6 and TensorFlow 1.4.1.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16

    text_summurization_abstractive_methods

    Multiple implementations for abstractive text summurization

    This repo is built to collect multiple implementations for abstractive approaches to address text summarization it is built to simply run on google colab , in one notebook so you would only need an internet connection to run these examples without the need to have a powerful machine , so all the code examples would be in a jupyter format , and you don't have to download data to your device as we connect these jupyter notebooks to google drive
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.