Open Source Julia Data Visualization Software

Julia Data Visualization Software

View 448 business solutions

Browse free open source Julia Data Visualization Software and projects below. Use the toggles on the left to filter open source Julia Data Visualization Software by OS, license, language, programming language, and project status.

  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • Powerful cloud-based licensing solution designed for fast-growing software businesses. Icon
    Powerful cloud-based licensing solution designed for fast-growing software businesses.

    A single-point of license control for desktop, SaaS, and mobile applications, APIs, VMs and devices.

    10Duke Enterprise is a cloud-based, scalable and flexible software licensing solution enabling software vendors to easily configure, manage and monetize the licenses they provide to their customers in real-time.
    Learn More
  • 1
    MATLAB.jl

    MATLAB.jl

    Calling MATLAB in Julia through MATLAB Engine

    The MATLAB.jl package provides an interface for using MATLAB® from Julia using the MATLAB C api. In other words, this package allows users to call MATLAB functions within Julia, thus making it easy to interoperate with MATLAB from the Julia language. You cannot use MATLAB.jl without having purchased and installed a copy of MATLAB® from MathWorks. This package is available free of charge and in no way replaces or alters any functionality of MathWorks's MATLAB product.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 2
    SimpleTraits.jl

    SimpleTraits.jl

    Simple Traits for Julia

    This package provides a macro-based implementation of traits, using Tim Holy's trait trick. The main idea behind traits is to group types outside the type-hierarchy and to make dispatch work with that grouping. The difference to Union-types is that types can be added to a trait after the creation of the trait, whereas Union types are fixed after creation. The cool thing about Tim's trick is that there is no performance impact compared to using ordinary dispatch. For a bit of background and a quick introduction to traits watch my 10min JuliaCon 2015 talk.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 3
    Julia VS Code

    Julia VS Code

    Julia extension for Visual Studio Code

    This VS Code extension provides support for the Julia programming language. We build on Julia’s unique combination of ease-of-use and performance. Beginners and experts can build better software more quickly, and get to a result faster. With a completely live environment, Julia for VS Code aims to take the frustration and guesswork out of programming and put the fun back in. A hybrid “canvas programming” style combines the exploratory power of a notebook with the productivity and static analysis features of an IDE. VS Code is a powerful editor and customizable to your heart’s content (though the defaults are pretty good too). It has power features like multiple cursors, fuzzy file finding and Vim keybindings.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 4
    PDMats.jl

    PDMats.jl

    Uniform Interface for positive definite matrices of various structures

    Uniform interface for positive definite matrices of various structures. Positive definite matrices are widely used in machine learning and probabilistic modeling, especially in applications related to graph analysis and Gaussian models. It is not uncommon that positive definite matrices used in practice have special structures (e.g. diagonal), which can be exploited to accelerate computation. PDMats.jl supports efficient computation on positive definite matrices of various structures. In particular, it provides uniform interfaces to use positive definite matrices of various structures for writing generic algorithms, while ensuring that the most efficient implementation is used in actual computation.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Repair-CRM Icon
    Repair-CRM

    For small companies that repair and maintenance customer machines

    All-In-One Solution with an Online Booking portal for automating scheduling & dispatching to ditch paperwork and improve the productivity of your technicians!
    Learn More
  • 5
    PythonCall & JuliaCall

    PythonCall & JuliaCall

    Python and Julia in harmony

    Bringing Python® and Julia together in seamless harmony. Call Python code from Julia and Julia code from Python via a symmetric interface. Simple syntax, so the Python code looks like Python and the Julia code looks like Julia. Intuitive and flexible conversions between Julia and Python: anything can be converted, you are in control. Fast non-copying conversion of numeric arrays in either direction: modify Python arrays (e.g. bytes, array. array, numpy.ndarray) from Julia or Julia arrays from Python. Helpful wrappers: interpret Python sequences, dictionaries, arrays, dataframes and IO streams as their Julia counterparts, and vice versa.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    LabPlot

    LabPlot

    Data Visualization and Analysis

    LabPlot is a FREE, open source and cross-platform Data Visualization and Analysis software accessible to everyone.
    Downloads: 36 This Week
    Last Update:
    See Project
  • 7
    SciMLBase.jl

    SciMLBase.jl

    The Base interface of the SciML ecosystem

    SciMLBase.jl is the core interface definition of the SciML ecosystem. It is a low-dependency library made to be depended on by the downstream libraries to supply the common interface and allow for the interexchange of mathematical problems. The SciML common interface ties together the numerical solvers of the Julia package ecosystem into a single unified interface. It is designed for maximal efficiency and parallelism, while incorporating essential features for large-scale scientific machine learning such as differentiability, composability, and sparsity.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    DynamicalSystems.jl

    DynamicalSystems.jl

    Award winning software library for nonlinear dynamics timeseries

    DynamicalSystems.jl is an award-winning Julia software library for nonlinear dynamics and nonlinear time series analysis. To install DynamicalSystems.jl, run import Pkg; Pkg.add("DynamicalSystems"). To learn how to use it and see its contents visit the documentation, which you can either find online or build locally by running the docs/make.jl file. DynamicalSystems.jl is part of JuliaDynamics, an organization dedicated to creating high-quality scientific software. All implemented algorithms provide a high-level scientific description of their functionality in their documentation string as well as references to scientific papers. The documentation features hundreds of tutorials and examples ranging from introductory to expert usage.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    MLJBase.jl

    MLJBase.jl

    Core functionality for the MLJ machine learning framework

    Repository for developers that provides core functionality for the MLJ machine learning framework. MLJ is a Julia framework for combining and tuning machine learning models. This repository provides core functionality for MLJ.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Easy-to-use Business Software for the Waste Management Software Industry Icon
    Easy-to-use Business Software for the Waste Management Software Industry

    Increase efficiency, expedite accounts receivables, optimize routes, acquire new customers, & more!

    DOP Software’s mission is to streamline waste and recycling business’ processes by providing them with dynamic, comprehensive software and services that increase productivity and quality of performance.
    Learn More
  • 10
    NonlinearSolve.jl

    NonlinearSolve.jl

    High-performance and differentiation-enabled nonlinear solvers

    Fast implementations of root-finding algorithms in Julia that satisfy the SciML common interface. For information on using the package, see the stable documentation. Use the in-development documentation for the version of the documentation that contains the unreleased features. NonlinearSolve.jl is a unified interface for the nonlinear solving packages of Julia. The package includes its own high-performance nonlinear solvers which include the ability to swap out to fast direct and iterative linear solvers, along with the ability to use sparse automatic differentiation for Jacobian construction and Jacobian-vector products. NonlinearSolve.jl interfaces with other packages of the Julia ecosystem to make it easy to test alternative solver packages and pass small types to control algorithm swapping. It also interfaces with the ModelingToolkit.jl world of symbolic modeling to allow for automatically generating high-performance code.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 11
    Oceananigans.jl

    Oceananigans.jl

    Julia software for fast, friendly, flexible fluid dynamics on CPUs

    Oceananigans is a fast, friendly, flexible software package for finite volume simulations of the nonhydrostatic and hydrostatic Boussinesq equations on CPUs and GPUs. It runs on GPUs (wow, fast!), though we believe Oceananigans makes the biggest waves with its ultra-flexible user interface that makes simple simulations easy, and complex, creative simulations possible.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing. Libraries from Python, R, C/Fortran, C++, and Java can also be used.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    Circuitscape.jl

    Circuitscape.jl

    Algorithms from circuit theory to predict connectivity

    Circuitscape is an open-source program that uses circuit theory to model connectivity in heterogeneous landscapes. Its most common applications include modeling the movement and gene flow of plants and animals, as well as identifying areas important for connectivity conservation. The new Circuitscape is built entirely in the Julia language, a new programming language for technical computing. Julia is built from the ground up to be fast. As such, this offers a number of advantages over the previous version.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Infiltrator.jl

    Infiltrator.jl

    No-overhead breakpoints in Julia

    This package provides the @infiltrate macro, which acts as a breakpoint with negligible runtime performance overhead. Note that you cannot access other function scopes or step into further calls. Use an actual debugger if you need that level of flexibility. Running code that ends up triggering the @infiltrate REPL mode via inline evaluation in VS Code or Juno can cause issues, so it's recommended to always use the REPL directly. When the infiltration point is hit, it will drop you into an interactive REPL session that lets you inspect local variables and the call stack as well as execute arbitrary statements in the context of the current local and global scope.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    PartitionedArrays.jl

    PartitionedArrays.jl

    Vectors and sparse matrices partitioned into pieces

    This package provides distributed (a.k.a. partitioned) vectors and sparse matrices in Julia. See the documentation for further details.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    DFTK.jl

    DFTK.jl

    Density-functional toolkit

    The density-functional toolkit, DFTK for short, is a collection of Julia routines for experimentation with plane-wave density-functional theory (DFT). The unique feature of this code is its emphasis on simplicity and flexibility with the goal of facilitating algorithmic and numerical developments as well as interdisciplinary collaboration in solid-state research.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    EAGO.jl

    EAGO.jl

    A development environment for robust and global optimization

    EAGO is an open-source development environment for robust and global optimization in Julia. EAGO is a deterministic global optimizer designed to address a wide variety of optimization problems, emphasizing nonlinear programs (NLPs), by propagating McCormick relaxations along the factorable structure of each expression in the NLP. Most operators supported by modern automatic differentiation (AD) packages (e.g., +, sin, cosh) are supported by EAGO and a number of utilities for sanitizing native Julia code and generating relaxations on a wide variety of user-defined functions have been included. Currently, EAGO supports problems that have a priori variable bounds defined and have differentiable constraints.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    ForwardDiff.jl

    ForwardDiff.jl

    Forward Mode Automatic Differentiation for Julia

    ForwardDiff implements methods to take derivatives, gradients, Jacobians, Hessians, and higher-order derivatives of native Julia functions (or any callable object, really) using forward mode automatic differentiation (AD). While performance can vary depending on the functions you evaluate, the algorithms implemented by ForwardDiff generally outperform non-AD algorithms (such as finite-differencing) in both speed and accuracy. Functions like f which map a vector to a scalar are the best case for reverse-mode automatic differentiation, but ForwardDiff may still be a good choice if x is not too large, as it is much simpler. The best case for forward-mode differentiation is a function that maps a scalar to a vector.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    Gridap.jl

    Gridap.jl

    Grid-based approximation of partial differential equations in Julia

    Gridap provides a set of tools for the grid-based approximation of partial differential equations (PDEs) written in the Julia programming language. The library currently supports linear and nonlinear PDE systems for scalar and vector fields, single and multi-field problems, conforming and nonconforming finite element (FE) discretizations, on structured and unstructured meshes of simplices and n-cubes. It also provides methods for time integration. Gridap is extensible and modular. One can implement new FE spaces, new reference elements, use external mesh generators, linear solvers, post-processing tools, etc. See, e.g., the list of available Gridap plugins.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    LinearSolve.jl

    LinearSolve.jl

    High-Performance Unified Interface for Linear Solvers in Julia

    LinearSolve.jl is a unified interface for the linear solving packages of Julia. It interfaces with other packages of the Julia ecosystem to make it easy to test alternative solver packages and pass small types to control algorithm swapping. It also interfaces with the ModelingToolkit.jl world of symbolic modeling to allow for automatically generating high-performance code. Performance is key: the current methods are made to be highly performant on scalar and statically sized small problems, with options for large-scale systems. If you run into any performance issues, please file an issue.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    ModelingToolkitStandardLibrary.jl

    ModelingToolkitStandardLibrary.jl

    A standard library of components to model the world and beyond

    The ModelingToolkit Standard Library is a standard library of components to model the world and beyond.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    PlutoSliderServer.jl

    PlutoSliderServer.jl

    Web server to run just the `@bind` parts of a Pluto.jl notebook

    Web server to run just the @bind parts of a Pluto.jl notebook. PlutoSliderServer can run a notebook and generate the export HTML file. This will give you the same file as the export button inside Pluto (top right), but automatically, without opening a browser. One use case is to automatically create a GitHub Pages site from a repository with notebooks. For this, take a look at our template repository that used GitHub Actions and PlutoSliderServer to generate a website on every commit. Many input elements only have a finite number of possible values, for example, PlutoUI.Slider(5:15) can only have 11 values. For finite inputs like the slider, PlutoSliderServer can run the slider server in advance, and precompute the results to all possible inputs (in other words: precompute the response to all possible requests).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    PlutoUI.jl

    PlutoUI.jl

    A tiny package to make html"input" a bit more Julian

    A tiny package to make HTML "input" a bit more Julian. Use it with the @bind macro in Pluto.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    PowerSimulations.jl

    PowerSimulations.jl

    Julia for optimization simulation and modeling of PowerSystems

    PowerSimulations.jl is a Julia package for power system modeling and simulation of Power Systems operations. Provide a flexible modeling framework that can accommodate problems of different complexity and at different time scales. Streamline the construction of large-scale optimization problems to avoid repetition of work when adding/modifying model details. Exploit Julia's capabilities to improve computational performance of large-scale power system quasi-static simulations. The flexible modeling framework is enabled through a modular set of capabilities that enable scalable power system analysis and exploration of new analysis methods. The modularity of PowerSimulations results from the structure of the simulations enabled by the package. Simulations define a set of problems that can be solved using numerical techniques.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    TaylorIntegration.jl

    TaylorIntegration.jl

    ODE integration using Taylor's method, and more, in Julia

    ODE integration using Taylor's method in Julia.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next