Showing 2650 open source projects for "linux is"

View related business solutions
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • Loan management software that makes it easy. Icon
    Loan management software that makes it easy.

    Ideal for lending professionals who are looking for a feature rich loan management system

    Bryt Software is ideal for lending professionals who are looking for a feature rich loan management system that is intuitive and easy to use. We are 100% cloud-based, software as a service. We believe in providing our customers with fair and honest pricing. Our monthly fees are based on your number of users and we have a minimal implementation charge.
    Learn More
  • 1
    OpenCL.jl

    OpenCL.jl

    OpenCL Julia bindings

    Julia interface for the OpenCL parallel computation API. This package aims to be a complete solution for OpenCL programming in Julia, similar in scope to PyOpenCL for Python. It provides a high level API for OpenCL to make programing hardware accelerators, such as GPUs, FPGAs, and DSPs, as well as multicore CPUs much less onerous.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    PythonCall & JuliaCall

    PythonCall & JuliaCall

    Python and Julia in harmony

    Bringing Python® and Julia together in seamless harmony. Call Python code from Julia and Julia code from Python via a symmetric interface. Simple syntax, so the Python code looks like Python and the Julia code looks like Julia. Intuitive and flexible conversions between Julia and Python: anything can be converted, you are in control. Fast non-copying conversion of numeric arrays in either direction: modify Python arrays (e.g. bytes, array. array, numpy.ndarray) from Julia or Julia arrays...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    FriendsDon'tLetFriends

    FriendsDon'tLetFriends

    Friends don't let friends make certain types of data visualization

    Friends don't let friends make certain types of data visualization - What are they and why are they bad.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    QuantumClifford.jl

    QuantumClifford.jl

    Clifford circuits, graph states, and other quantum Stabilizer tools

    A Julia package for working with quantum stabilizer states and Clifford circuits that act on them. Graphs states are also supported. The package is already very fast for the majority of common operations, but there are still many low-hanging fruits performance-wise. See the detailed suggested readings & references page for background on the various algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • The complete IT asset and license management platform Icon
    The complete IT asset and license management platform

    Gain full visibility and control over your IT assets, licenses, usage and spend in one place with Setyl.

    The platform seamlessly integrates with 100+ IT systems, including MDM, RMM, IDP, SSO, HR, finance, helpdesk tools, and more.
    Learn More
  • 5
    CounterfactualExplanations.jl

    CounterfactualExplanations.jl

    A package for Counterfactual Explanations and Algorithmic Recourse

    CounterfactualExplanations.jl is a package for generating Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for black-box algorithms. Both CE and AR are related tools for explainable artificial intelligence (XAI). While the package is written purely in Julia, it can be used to explain machine learning algorithms developed and trained in other popular programming languages like Python and R. See below for a short introduction and other resources or dive straight into the docs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    MIRT.jl

    MIRT.jl

    MIRT: Michigan Image Reconstruction Toolbox (Julia version)

    MIRT.jl is a collection of Julia functions for performing image reconstruction and solving related inverse problems. It is very much still under construction, although there are already enough tools to solve useful problems like compressed sensing MRI reconstruction. Trying the demos is a good way to get started. The documentation is even more still under construction.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Functors.jl

    Functors.jl

    Parameterise all the things

    Functors.jl provides tools to express a powerful design pattern for dealing with large/ nested structures, as in machine learning and optimization. For large machine learning models, it can be cumbersome or inefficient to work with parameters as one big, flat vector, and structs help manage complexity; but it is also desirable to easily operate over all parameters at once, e.g. for changing precision or applying an optimizer update step.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Parquet.jl

    Parquet.jl

    Julia implementation of Parquet columnar file format reader

    A parquet file or dataset can be loaded using the read_parquet function. A parquet dataset is a directory with multiple parquet files, each of which is a partition belonging to the dataset.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    IntervalRootFinding.jl

    IntervalRootFinding.jl

    Find all roots of a function in a guaranteed way with Julia

    This package provides guaranteed methods for finding roots of functions, i.e. solutions to the equation f(x) == 0 for a function f. To do so, it uses methods from interval analysis, using interval arithmetic from the IntervalArithmetic.jl package by the same authors. The basic function is roots. A standard Julia function and an interval is provided and the roots function return a list of intervals containing all roots of the function located in the starting interval.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • 10
    FinEtools.jl

    FinEtools.jl

    Finite Element tools in Julia

    FinEtools is a package for basic operations on finite element meshes: Construction, modification, selection, and evaluation of quantities defined on a mesh. Utilities are provided for maintaining mesh-based data (fields), for defining normals and loads, for working with physical units and coordinate systems, and for integrating over finite element meshes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MethodOfLines.jl

    MethodOfLines.jl

    Automatic Finite Difference PDE solving with Julia SciML

    MethodOfLines.jl is a Julia package for automated finite difference discretization of symbolically defined PDEs in N dimensions. It uses symbolic expressions for systems of partial differential equations as defined with ModelingToolkit.jl, and Interval from DomainSets.jl to define the space(time) over which the simulation runs. This project is under active development, therefore the interface is subject to change. The docs will be updated to reflect any changes, please check back for current...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Tulip.jl

    Tulip.jl

    Interior-point solver in pure Julia

    Tulip is an open-source interior-point solver for linear optimization, written in pure Julia. It implements the homogeneous primal-dual interior-point algorithm with multiple centrality corrections and therefore handles unbounded and infeasible problems. Tulip’s main feature is that its algorithmic framework is disentangled from linear algebra implementations. This allows to seamless integration of specialized routines for structured problems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Conda.jl

    Conda.jl

    https://github.com/JuliaPy/Conda.jl

    This package allows one to use conda as a cross-platform binary provider for Julia for other Julia packages, especially to install binaries that have complicated dependencies like Python. conda is a package manager that started as the binary package manager for the Anaconda Python distribution, but it also provides arbitrary packages. Instead of the full Anaconda distribution, Conda.jl uses the miniconda Python environment, which only includes conda and its dependencies.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    CoordinateTransformations.jl

    CoordinateTransformations.jl

    A fresh approach to coordinate transformations

    CoordinateTransformations is a Julia package to manage simple or complex networks of coordinate system transformations. Transformations can be easily applied, inverted, composed, and differentiated (both with respect to the input coordinates and with respect to transformation parameters such as rotation angle). Transformations are designed to be light-weight and efficient enough for, e.g., real-time graphical applications, while support for both explicit and automatic differentiation makes...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Coluna.jl

    Coluna.jl

    Branch-and-Price-and-Cut in Julia

    Coluna is a branch-and-price-and-cut framework written in Julia. You write an original MIP that models your problem using the JuMP modeling language and our specific extension BlockDecomposition offers a syntax to specify the problem decomposition. Then, Coluna reformulates the original MIP and optimizes the reformulation using the algorithms you choose. Coluna aims to be very modular and tweakable so that you can define the behavior of your customized branch-and-price-and-cut algorithm.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    InfiniteOpt.jl

    InfiniteOpt.jl

    An intuitive modeling interface for infinite-dimensional optimization

    A JuMP extension for expressing and solving infinite-dimensional optimization problems. InfiniteOpt.jl provides a general mathematical abstraction to express and solve infinite-dimensional optimization problems (i.e., problems with decision functions). Such problems stem from areas such as space-time programming and stochastic programming. InfiniteOpt is meant to facilitate intuitive model definition, automatic transcription into solvable models, permit a wide range of user-defined...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    GPUArrays

    GPUArrays

    Reusable array functionality for Julia's various GPU backends

    Reusable GPU array functionality for Julia's various GPU backends. This package is the counterpart of Julia's AbstractArray interface, but for GPU array types: It provides functionality and tooling to speed-up development of new GPU array types. This package is not intended for end users! Instead, you should use one of the packages that builds on GPUArrays.jl, such as CUDA.jl, oneAPI.jl, AMDGPU.jl, or Metal.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Surrogates.jl

    Surrogates.jl

    Surrogate modeling and optimization for scientific machine learning

    A surrogate model is an approximation method that mimics the behavior of a computationally expensive simulation. In more mathematical terms: suppose we are attempting to optimize a function f(p), but each calculation of f is very expensive. It may be the case we need to solve a PDE for each point or use advanced numerical linear algebra machinery, which is usually costly. The idea is then to develop a surrogate model g which approximates f by training on previous data collected from...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Metalhead.jl

    Metalhead.jl

    Computer vision models for Flux

    Metalhead.jl provides standard machine learning vision models for use with Flux.jl. The architectures in this package make use of pure Flux layers, and they represent the best practices for creating modules like residual blocks, inception blocks, etc. in Flux. Metalhead also provides some building blocks for more complex models in the Layers module.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Graphs.jl

    Graphs.jl

    An optimized graphs package for the Julia programming language

    The goal of Graphs.jl is to offer a performant platform for network and graph analysis in Julia, following the example of libraries such as NetworkX in Python. Offers a set of simple, concrete graph implementations – SimpleGraph (for undirected graphs) and SimpleDiGraph (for directed graphs), an API for the development of more sophisticated graph implementations under the AbstractGraph type, and a large collection of graph algorithms with the same requirements as this API.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    DataFramesMeta.jl

    DataFramesMeta.jl

    Metaprogramming tools for DataFrames

    Metaprogramming tools for DataFrames.jl objects to provide more convenient syntax. DataFrames.jl has the functions select, transform, and combine, as well as the in-place select! and transform! for manipulating data frames. DataFramesMeta.jl provides the macros @select, @transform, @combine, @select!, and @transform! to mirror these functions with more convenient syntax. Inspired by dplyr in R and LINQ in C#.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    ApproxFun.jl

    ApproxFun.jl

    Julia package for function approximation

    ApproxFun is a package for approximating functions. It is in a similar vein to the Matlab package Chebfun and the Mathematica package RHPackage. The ApproxFun Documentation contains detailed information, or read on for a brief overview of the package. The documentation contains examples of usage, such as solving ordinary and partial differential equations. The ApproxFun Examples repo contains many examples of using this package, in Jupyter notebooks and Julia scripts. Note that this is...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    OnlineStats.jl

    OnlineStats.jl

    Single-pass algorithms for statistics

    OnlineStats does statistics and data visualization for big/streaming data via online algorithms. High-performance single-pass algorithms for statistics and data viz. Updated one observation at a time. Algorithms use O(1) memory. Algorithms use O(1) memory.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Run Page

    Run Page

    Make your own running home page

    GitHub Actions manages automatic synchronization of runs and generation of new pages. Gatsby-generated static pages, fast. Support for Vercel (recommended) and GitHub Pages automated deployment. React Hooks. Mapbox for map display. Supports most sports apps such as nike strava. Automatically backup gpx data for easy backup and uploading to other software.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    ggstatsplot

    ggstatsplot

    Enhancing {ggplot2} plots with statistical analysis

    {ggstatsplot} is an extension of {ggplot2} package for creating graphics with details from statistical tests included in the information-rich plots themselves. In a typical exploratory data analysis workflow, data visualization and statistical modeling are two different phases: visualization informs modeling, and modeling in its turn can suggest a different visualization method, and so on and so forth. Bayesian hypothesis-testing. The central idea of {ggstatsplot} is simple: combine these...
    Downloads: 0 This Week
    Last Update:
    See Project