Showing 530 open source projects for "raspberry-gpio-python"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Apache Airflow Provider

    Apache Airflow Provider

    Great Expectations Airflow operator

    Due to apply_default decorator removal, this version of the provider requires Airflow 2.1.0+. If your Airflow version is 2.1.0, and you want to install this provider version, first upgrade Airflow to at least version 2.1.0. Otherwise, your Airflow package version will be upgraded automatically, and you will have to manually run airflow upgrade db to complete the migration. This operator currently works with the Great Expectations V3 Batch Request API only. If you would like to use the...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    gusty

    gusty

    Making DAG construction easier

    gusty allows you to control your Airflow DAGs, Task Groups, and Tasks with greater ease. gusty manages collections of tasks, represented as any number of YAML, Python, SQL, Jupyter Notebook, or R Markdown files. A directory of task files is instantly rendered into a DAG by passing a file path to gusty's create_dag function. gusty also manages dependencies (within one DAG) and external dependencies (dependencies on tasks in other DAGs) for each task file you define. All you have to do is provide...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Bayesian Optimization

    Bayesian Optimization

    Python implementation of global optimization with gaussian processes

    This is a constrained global optimization package built upon bayesian inference and gaussian process, that attempts to find the maximum value of an unknown function in as few iterations as possible. This technique is particularly suited for optimization of high cost functions, situations where the balance between exploration and exploitation is important. More detailed information, other advanced features, and tips on usage/implementation can be found in the examples folder. Follow the basic...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    Digital Earth Australia notebooks

    Digital Earth Australia notebooks

    Repository for Digital Earth Australia Jupyter Notebooks

    The knowledge hub brings together information about Digital Earth Australia’s products and services, allowing you to utilize our free and open-source satellite imagery archive. Browse our catalog of data products to find supporting information and ways to access the data. The Digital Earth Australia notebooks and tools repository (dea-notebooks) hosts Jupyter Notebooks, Python scripts and workflows for analyzing Digital Earth Australia (DEA) satellite data and derived products
    Downloads: 3 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    libCEED

    libCEED

    CEED Library: Code for Efficient Extensible Discretizations

    libCEED provides fast algebra for element-based discretizations, designed for performance portability, run-time flexibility, and clean embedding in higher-level libraries and applications. It offers a C99 interface as well as bindings for Fortran, Python, Julia, and Rust. While our focus is on high-order finite elements, the approach is mostly algebraic and thus applicable to other discretizations in factored form, as explained in the user manual and API implementation portion
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    OpenCL.jl

    OpenCL.jl

    OpenCL Julia bindings

    Julia interface for the OpenCL parallel computation API. This package aims to be a complete solution for OpenCL programming in Julia, similar in scope to PyOpenCL for Python. It provides a high level API for OpenCL to make programing hardware accelerators, such as GPUs, FPGAs, and DSPs, as well as multicore CPUs much less onerous.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Encord Active

    Encord Active

    The toolkit to test, validate, and evaluate your models and surface

    Encord Active is an open-source toolkit to test, validate, and evaluate your models and surface, curate, and prioritize the most valuable data for labeling to supercharge model performance. Encord Active has been designed as a all-in-one open source toolkit for improving your data quality and model performance. Use the intuitive UI to explore your data or access all the functionalities programmatically. Discover errors, outliers, and edge-cases within your data - all in one open source...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Gretel Synthetics

    Gretel Synthetics

    Synthetic data generators for structured and unstructured text

    Unlock unlimited possibilities with synthetic data. Share, create, and augment data with cutting-edge generative AI. Generate unlimited data in minutes with synthetic data delivered as-a-service. Synthesize data that are as good or better than your original dataset, and maintain relationships and statistical insights. Customize privacy settings so that data is always safe while remaining useful for downstream workflows. Ensure data accuracy and privacy confidently with expert-grade reports....
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Pandas Profiling

    Pandas Profiling

    Create HTML profiling reports from pandas DataFrame objects

    pandas-profiling generates profile reports from a pandas DataFrame. The pandas df.describe() function is handy yet a little basic for exploratory data analysis. pandas-profiling extends pandas DataFrame with df.profile_report(), which automatically generates a standardized univariate and multivariate report for data understanding. High correlation warnings, based on different correlation metrics (Spearman, Pearson, Kendall, Cramér’s V, Phik). Most common categories (uppercase, lowercase,...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    D-Tale

    D-Tale

    Visualizer for pandas data structures

    D-Tale is the combination of a Flask backend and a React front-end to bring you an easy way to view & analyze Pandas data structures. It integrates seamlessly with ipython notebooks & python/ipython terminals. Currently, this tool supports such Pandas objects as DataFrame, Series, MultiIndex, DatetimeIndex & RangeIndex. D-Tale was the product of a SAS to Python conversion. What was originally a perl script wrapper on top of SAS's insight function is now a lightweight web client on top of Pandas...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    JUDI.jl

    JUDI.jl

    Julia Devito inversion

    JUDI is a framework for large-scale seismic modeling and inversion and is designed to enable rapid translations of algorithms to fast and efficient code that scales to industry-size 3D problems. The focus of the package lies on seismic modeling as well as PDE-constrained optimization such as full-waveform inversion (FWI) and imaging (LS-RTM). Wave equations in JUDI are solved with Devito, a Python domain-specific language for automated finite-difference (FD) computations. JUDI's modeling...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Sundials.jl

    Sundials.jl

    Julia interface to Sundials, including a nonlinear solver

    This is a suite for numerically solving differential equations written in Julia and available for use in Julia, Python, and R. The purpose of this package is to supply efficient Julia implementations of solvers for various differential equations.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Dolphin Scheduler

    Dolphin Scheduler

    A distributed and extensible workflow scheduler platform

    ... definition operations are visualized, Visualization process defines key information at a glance, One-click deployment. Support multi-tenant. Support many task types e.g., spark,flink,hive, mr, shell, python, sub_process. Support custom task types, Distributed scheduling, and the overall scheduling capability will increase linearly with the scale of the cluster.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    Lithops

    Lithops

    A multi-cloud framework for big data analytics

    Lithops is an open-source serverless computing framework that enables transparent execution of Python functions across multiple cloud providers and on-prem infrastructure. It abstracts cloud providers like IBM Cloud, AWS, Azure, and Google Cloud into a unified interface and turns your Python functions into scalable, event-driven workloads. Lithops is ideal for data processing, ML inference, and embarrassingly parallel workloads, giving you the power of FaaS (Function-as-a-Service) without...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Dask

    Dask

    Parallel computing with task scheduling

    Dask is a Python library for parallel and distributed computing, designed to scale analytics workloads from single machines to large clusters. It integrates with familiar tools like NumPy, Pandas, and scikit-learn while enabling execution across cores or nodes with minimal code changes. Dask excels at handling large datasets that don’t fit into memory and is widely used in data science, machine learning, and big data pipelines.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    PairPlots.jl

    PairPlots.jl

    Beautiful and flexible vizualizations of high dimensional data

    Beautiful and flexible visualizations of high-dimensional data. This package produces pair plots, otherwise known as corner plots or scatter plot matrices: grids of 1D and 2D histograms that allow you to visualize high-dimensional data. Pair plots are an excellent way to visualize the results of MCMC simulations, but are also a useful way to visualize correlations in general data tables. The default styles of this package roughly reproduce the output of the Python library corner.py for a single...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    ydata-profiling

    ydata-profiling

    Create HTML profiling reports from pandas DataFrame objects

    ydata-profiling primary goal is to provide a one-line Exploratory Data Analysis (EDA) experience in a consistent and fast solution. Like pandas df.describe() function, that is so handy, ydata-profiling delivers an extended analysis of a DataFrame while allowing the data analysis to be exported in different formats such as html and json.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    PySyft

    PySyft

    Data science on data without acquiring a copy

    Most software libraries let you compute over the information you own and see inside of machines you control. However, this means that you cannot compute on information without first obtaining (at least partial) ownership of that information. It also means that you cannot compute using machines without first obtaining control over those machines. This is very limiting to human collaboration and systematically drives the centralization of data, because you cannot work with a bunch of data...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    PyVista

    PyVista

    3D plotting and mesh analysis through a streamlined interface

    ... for scientific plotting for presentations and research papers as well as a supporting module for other mesh-dependent Python modules. Easily integrate with NumPy and create a variety of geometries and plot them. You could use any geometry to create your glyphs, or even plot the points directly. Direct access to mesh analysis and transformation routines. Intuitive plotting routines with matplotlib similar syntax.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    OptimalTransport.jl

    OptimalTransport.jl

    Optimal transport algorithms for Julia

    This package provides some Julia implementations of algorithms for computational optimal transport, including the Earth-Mover's (Wasserstein) distance, Sinkhorn algorithm for entropically regularized optimal transport as well as some variants or extensions. Notably, OptimalTransport.jl provides GPU acceleration through CUDA.jl and NNlibCUDA.jl.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    whylogs

    whylogs

    The open standard for data logging

    whylogs is an open-source library for logging any kind of data. With whylogs, users are able to generate summaries of their datasets (called whylogs profiles) which they can use to track changes in their dataset Create data constraints to know whether their data looks the way it should. Quickly visualize key summary statistics about their datasets. whylogs profiles are the core of the whylogs library. They capture key statistical properties of data, such as the distribution (far beyond...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This...
    Downloads: 2 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.