Showing 42 open source projects for "python neural network"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    NeuralOperators.jl

    NeuralOperators.jl

    DeepONets, Neural Operators, Physics-Informed Neural Ops in Julia

    Neural operator is a novel deep learning architecture. It learns an operator, which is a mapping between infinite-dimensional function spaces. It can be used to resolve partial differential equations (PDE). Instead of solving by finite element method, a PDE problem can be resolved by training a neural network to learn an operator mapping from infinite-dimensional space (u, t) to infinite-dimensional space f(u, t).
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    NNlib.jl

    NNlib.jl

    Neural Network primitives with multiple backends

    This package provides a library of functions useful for neural networks, such as softmax, sigmoid, batched multiplication, convolutions and pooling. Many of these are used by Flux.jl, which loads this package, but they may be used independently.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    ...SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit, and OpenCV. These tools enable powerful and highly-scalable predictive and analytical models for a variety of data sources. SynapseML also brings new networking capabilities to the Spark Ecosystem. With the HTTP on Spark project, users can embed any web service into their SparkML models. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    PySR

    PySR

    High-Performance Symbolic Regression in Python and Julia

    PySR is an open-source tool for Symbolic Regression: a machine learning task where the goal is to find an interpretable symbolic expression that optimizes some objective. Over a period of several years, PySR has been engineered from the ground up to be (1) as high-performance as possible, (2) as configurable as possible, and (3) easy to use. PySR is developed alongside the Julia library SymbolicRegression.jl, which forms the powerful search engine of PySR. The details of these algorithms are...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    GraphNeuralNetworks.jl

    GraphNeuralNetworks.jl

    Graph Neural Networks in Julia

    GraphNeuralNetworks.jl is a graph neural network library written in Julia and based on the deep learning framework Flux.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    TensorBoardX

    TensorBoardX

    tensorboard for pytorch (and chainer, mxnet, numpy, etc.)

    The SummaryWriter class provides a high-level API to create an event file in a given directory and add summaries and events to it. The class updates the file contents asynchronously. This allows a training program to call methods to add data to the file directly from the training loop, without slowing down training. TensorboardX now supports logging directly to Comet. Comet is a free cloud based solution that allows you to automatically track, compare and explain your experiments. It adds a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    CounterfactualExplanations.jl

    CounterfactualExplanations.jl

    A package for Counterfactual Explanations and Algorithmic Recourse

    CounterfactualExplanations.jl is a package for generating Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for black-box algorithms. Both CE and AR are related tools for explainable artificial intelligence (XAI). While the package is written purely in Julia, it can be used to explain machine learning algorithms developed and trained in other popular programming languages like Python and R. See below for a short introduction and other resources or dive straight into the docs.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    Neuroglancer

    Neuroglancer

    WebGL-based viewer for volumetric data

    Neuroglancer is a WebGL-based visualization tool designed for exploring large-scale volumetric and neuroimaging datasets directly in the browser. It allows users to interactively view arbitrary 2D and 3D cross-sections of volumetric data alongside 3D meshes and skeleton models, enabling precise examination of neural structures and biological imaging results. Its multi-pane interface synchronizes multiple orthogonal views with a central 3D viewport, making it ideal for analyzing complex brain...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    JUDI.jl

    JUDI.jl

    Julia Devito inversion

    ...The focus of the package lies on seismic modeling as well as PDE-constrained optimization such as full-waveform inversion (FWI) and imaging (LS-RTM). Wave equations in JUDI are solved with Devito, a Python domain-specific language for automated finite-difference (FD) computations. JUDI's modeling operators can also be used as layers in (convolutional) neural networks to implement physics-augmented deep learning algorithms thanks to its implementation of ChainRules's rrule for the linear operators representing the discre wave equation.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Get the most trusted enterprise browser Icon
    Get the most trusted enterprise browser

    Advanced built-in security helps IT prevent breaches before they happen

    Defend against security incidents with Chrome Enterprise. Create customizable controls, manage extensions and set proactive alerts to keep your data and employees protected without slowing down productivity.
    Download Chrome
  • 10
    forecast

    forecast

    Forecasting Functions for Time Series and Linear Models

    The forecast package is a comprehensive R package for time series analysis and forecasting. It provides functions for building, assessing, and using univariate forecasting models (e.g. ARIMA, exponential smoothing, etc.), tools for automatic model selection, diagnostics, plotting, forecasting future values, etc. It's widely used in statistics, economics, business forecasting, environmental science, etc. Exponential smoothing state space models (ETS) including seasonal components. Residual...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Graphs.jl

    Graphs.jl

    An optimized graphs package for the Julia programming language

    The goal of Graphs.jl is to offer a performant platform for network and graph analysis in Julia, following the example of libraries such as NetworkX in Python. Offers a set of simple, concrete graph implementations – SimpleGraph (for undirected graphs) and SimpleDiGraph (for directed graphs), an API for the development of more sophisticated graph implementations under the AbstractGraph type, and a large collection of graph algorithms with the same requirements as this API.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    DeepH-pack

    DeepH-pack

    Deep neural networks for density functional theory Hamiltonian

    DeepH-pack is the official implementation of the DeepH (Deep Hamiltonian) method described in the paper Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation and in the Research Briefing. DeepH-pack supports DFT results made by ABACUS, OpenMX, FHI-aims or SIESTA and will support HONPAS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Kinetic.jl

    Kinetic.jl

    Universal modeling and simulation of fluid mechanics upon ML

    ...It aims to furnish efficient modeling and simulation methodologies for fluid dynamics, augmented by the power of machine learning. Based on differentiable programming, mechanical and neural network models are fused and solved in a unified framework. Simultaneous 1-3 dimensional numerical simulations can be performed on CPUs and GPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DataMelt

    DataMelt

    Computation and Visualization environment

    DataMelt (or "DMelt") is an environment for numeric computation, data analysis, computational statistics, and data visualization. This Java multiplatform program is integrated with several scripting languages such as Jython (Python), Groovy, JRuby, BeanShell. DMelt can be used to plot functions and data in 2D and 3D, perform statistical tests, data mining, numeric computations, function minimization, linear algebra, solving systems of linear and differential equations. Linear, non-linear and symbolic regression are also available. Neural networks and various data-manipulation methods are integrated using powerful Java API. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Awesome Fraud Detection Research Papers

    Awesome Fraud Detection Research Papers

    A curated list of data mining papers about fraud detection

    A curated list of data mining papers about fraud detection from several conferences.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    CNN Explainer

    CNN Explainer

    Learning Convolutional Neural Networks with Interactive Visualization

    In machine learning, a classifier assigns a class label to a data point. For example, an image classifier produces a class label (e.g, bird, plane) for what objects exist within an image. A convolutional neural network, or CNN for short, is a type of classifier, which excels at solving this problem! A CNN is a neural network: an algorithm used to recognize patterns in data. Neural Networks in general are composed of a collection of neurons that are organized in layers, each with their own learnable weights and biases. Let’s break down a CNN into its basic building blocks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    istSOS

    istSOS

    Free and Open Source Sensor Observation Service Data Management System

    istSOS is an OGC SOS server implementation written in Python. istSOS allows for managing and dispatch observations from monitoring sensors according to the Sensor Observation Service standard. The project provides also a Graphical user Interface that allows for easing the daily operations and a RESTful Web api for automatizing administration procedures. istSOS is released under the GPL License, and runs on all major platforms (Windows, Linux, Mac OS X), even though tests were conducted...
    Downloads: 58 This Week
    Last Update:
    See Project
  • 18
    Deep Learning with PyTorch

    Deep Learning with PyTorch

    Latest techniques in deep learning and representation learning

    This course concerns the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. The prerequisites include DS-GA 1001 Intro to Data Science or a graduate-level machine learning course. To be able to follow the exercises, you are going to need a laptop with Miniconda (a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Olex2 is visualisation software for small-molecule crystallography developed at Durham University/EPSRC. It provides comprehensive tools for crystallographic model manipulation for the end user and an extensible development framework for programmers. The project has been supported by Olexsys Ltd since 2010.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    CloverDX

    CloverDX

    Design, automate, operate and publish data pipelines at scale

    Please, visit www.cloverdx.com for latest product versions. Data integration platform; can be used to transform/map/manipulate data in batch and near-realtime modes. Suppors various input/output formats (CSV,FIXLEN,Excel,XML,JSON,Parquet, Avro,EDI/X12,HL7,COBOL,LOTUS, etc.). Connects to RDBMS/JMS/Kafka/SOAP/Rest/LDAP/S3/HTTP/FTP/ZIP/TAR. CloverDX offers 100+ specialized components which can be further extended by creation of "macros" - subgraphs - and libraries, shareable with 3rd...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 21
    apache spark data pipeline osDQ

    apache spark data pipeline osDQ

    osDQ dedicated to create apache spark based data pipeline using JSON

    This is an offshoot project of open source data quality (osDQ) project https://sourceforge.net/projects/dataquality/ This sub project will create apache spark based data pipeline where JSON based metadata (file) will be used to run data processing , data pipeline , data quality and data preparation and data modeling features for big data. This uses java API of apache spark. It can run in local mode also. Get json example at https://github.com/arrahtech/osdq-spark How to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DeepLearningProject

    DeepLearningProject

    An in-depth machine learning tutorial

    This tutorial tries to do what most Most Machine Learning tutorials available online do not. It is not a 30 minute tutorial that teaches you how to "Train your own neural network" or "Learn deep learning in under 30 minutes". It's a full pipeline which you would need to do if you actually work with machine learning - introducing you to all the parts, and all the implementation decisions and details that need to be made. The dataset is not one of the standard sets like MNIST or CIFAR, you will make you very own dataset. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    Random Bits Forest

    RBF: a Strong Classifier/Regressor for Big Data

    We present a classification and regression algorithm called Random Bits Forest (RBF). RBF integrates neural network (for depth), boosting (for wideness) and random forest (for accuracy). It first generates and selects ~10,000 small three-layer threshold random neural networks as basis by gradient boosting scheme. These binary basis are then feed into a modified random forest algorithm to obtain predictions. In conclusion, RBF is a novel framework that performs strongly especially on data with large size.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 24
    Hetionet

    Hetionet

    Hetionet: an integrative network of disease

    Hetionet is a hetnet — network with multiple node and edge (relationship) types — which encodes biology. The hetnet was designed for Project Rephetio, which aims to systematically identify why drugs work and predict new therapies for drugs. The JSON and Neo4j formats contain node and edge properties, which are absent in the TSV and matrix formats, including licensing information.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    COV2HTML

    COV2HTML

    A visualization and analysis tool of Bacterial NGS data for Biologists

    COV2HTML provides an easy and 'in home' web interface for biologists that allows coverage visualization of the NGS alignment needed for the analysis. It combines two essential processes: (i) MAP2COV, a tool that converts the huge NGS mapping or coverage files into light specific coverage files which contains genetic elements informations. (ii) COV2HTML, a visualization interface allowing a real-time analysis of data with selected criteria. Thus this interface offers a visualization of NGS...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next