Open Source Julia Data Management Systems - Page 5

Julia Data Management Systems

View 4157 business solutions

Browse free open source Julia Data Management Systems and projects below. Use the toggles on the left to filter open source Julia Data Management Systems by OS, license, language, programming language, and project status.

  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    ClimateMachine.jl

    ClimateMachine.jl

    Earth System Model that automatically learns from data

    The ClimateMachine is a software package that models the evolution of the Earth system over weeks to centuries. The ClimateMachine solves three-dimensional partial differential equations for the distributions of water, momentum, energy, and tracers such as carbon in the atmosphere, oceans, and on land. The ClimateMachine will harness a wide range of Earth observations and data generated computationally to predict the evolution of Earth’s climate and features such as droughts, rainfall extremes, and high-impact storms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    ClimateTools.jl

    ClimateTools.jl

    Climate science package for Julia

    Climate analysis tools in Julia. ClimateTools.jl is a collection of commonly-used tools in Climate science. Basics of climate field analysis are covered, with some forays into exploratory techniques associated with climate scenario design. The package is aimed to ease the typical steps of analysis of climate models outputs and gridded datasets (support for weather stations is a work-in-progress). Climate indices and bias correction functions are coded to leverage the use of multiple threads. To gain maximum performance, use (bash shell Linux/MacOSX) export JULIA_NUM_THREADS=n, where n is the number of threads. To get an idea of the number of threads you can use type (in Julia) Sys.THREADS. This is especially useful for bias correction.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Clustering.jl

    Clustering.jl

    A Julia package for data clustering

    Methods for data clustering and evaluation of clustering quality.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    ColorSchemes.jl

    ColorSchemes.jl

    colorschemes, colormaps, gradients, and palettes

    Color schemes, colormaps, gradients, and palettes. Choose ColorSchemes with care. Refer to Peter Kovesi's PerceptualColourMaps package, or to Fabio Crameri's Scientific Colour Maps for more information. If you want to make more advanced ColorSchemes, use linear-segment dictionaries or indexed lists, and use functions to generate color values, see the make_colorscheme() function in the ColorSchemeTools.jl package.
    Downloads: 0 This Week
    Last Update:
    See Project
  • BoldTrail Real Estate CRM Icon
    BoldTrail Real Estate CRM

    A first-of-its-kind homeownership solution that puts YOU at the center of the coveted lifetime consumer relationship.

    BoldTrail, the #1 rated real estate platform, is built to power your entire brokerage with next-generation technology your agents will use and love. Showcase your unique brand with customizable websites for your company, offices, and every agent. Maximize lead capture with a modern, portal-like consumer search experience and intelligent behavior tracking. Hyper-local area pages, home valuation pages and options for rich lifestyle data keep customers searching with your brokerage as the local experts. The most robust lead gen tools on the market help your brokerage, teams & agents effectively drive new business - no matter their budget. Empower your agents to generate free leads instantly with our simple to use landing pages & IDX squeeze pages. Drive more leads with higher quality and lower cost through in-house tools built within the platform. Diversify lead sources with our automated social media posting, integrated Google and Facebook advertising, custom text codes and more.
    Learn More
  • 5
    Coluna.jl

    Coluna.jl

    Branch-and-Price-and-Cut in Julia

    Coluna is a branch-and-price-and-cut framework written in Julia. You write an original MIP that models your problem using the JuMP modeling language and our specific extension BlockDecomposition offers a syntax to specify the problem decomposition. Then, Coluna reformulates the original MIP and optimizes the reformulation using the algorithms you choose. Coluna aims to be very modular and tweakable so that you can define the behavior of your customized branch-and-price-and-cut algorithm.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Compat.jl

    Compat.jl

    Compatibility across Julia versions

    The Compat package is designed to ease interoperability between older and newer versions of the Julia language. In particular, in cases where it is impossible to write code that works with both the latest Julia master branch and older Julia versions, or impossible to write code that doesn't generate a deprecation warning in some Julia version, the Compat package provides a macro that lets you use the latest syntax in a backward-compatible way. This is primarily intended for use by other Julia packages, where it is important to maintain cross-version compatibility.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    CompatHelper.jl

    CompatHelper.jl

    Automatically update the [compat] entries for your Julia dependencies

    CompatHelper.jl is a Julia package which keeps your Project.toml [compat] entries up to date.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Compose.jl

    Compose.jl

    Declarative vector graphics

    Compose is a vector graphics library for Julia. It forms the basis for the statistical graphics system Gadfly. Compose is a declarative vector graphics system written in Julia. It's designed to simplify the creation of complex graphics and serves as the basis of the Gadfly data visualization package.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    ConcurrentSim.jl

    ConcurrentSim.jl

    Discrete event process oriented simulation framework written in Julia

    A discrete event process-oriented simulation framework written in Julia inspired by the Python library SimPy. One of the longest-lived Julia packages (originally under the name SimJulia).
    Downloads: 0 This Week
    Last Update:
    See Project
  • G-P - Global EOR Solution Icon
    G-P - Global EOR Solution

    Companies searching for an Employer of Record solution to mitigate risk and manage compliance, taxes, benefits, and payroll anywhere in the world

    With G-P's industry-leading Employer of Record (EOR) and Contractor solutions, you can hire, onboard and manage teams in 180+ countries — quickly and compliantly — without setting up entities.
    Learn More
  • 10
    Conda.jl

    Conda.jl

    https://github.com/JuliaPy/Conda.jl

    This package allows one to use conda as a cross-platform binary provider for Julia for other Julia packages, especially to install binaries that have complicated dependencies like Python. conda is a package manager that started as the binary package manager for the Anaconda Python distribution, but it also provides arbitrary packages. Instead of the full Anaconda distribution, Conda.jl uses the miniconda Python environment, which only includes conda and its dependencies.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    CondaPkg.jl

    CondaPkg.jl

    Add Conda dependencies to your Julia project

    Add Conda dependencies to your Julia project. This package is a lot like Pkg from the Julia standard library, except that it is for managing Conda packages. Conda dependencies are defined in CondaPkg.toml, which is analogous to Project.toml. CondaPkg will install these dependencies into a Conda environment specific to the current Julia project. Hence dependencies are isolated from other projects or environments. Functions like add, rm, status exist to edit the dependencies programmatically. Or you can do pkg> conda add some_package to edit the dependencies from the Pkg REPL.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    ConformalPrediction.jl

    ConformalPrediction.jl

    Predictive Uncertainty Quantification through Conformal Prediction

    ConformalPrediction.jl is a package for Predictive Uncertainty Quantification (UQ) through Conformal Prediction (CP) in Julia. It is designed to work with supervised models trained in MLJ (Blaom et al. 2020). Conformal Prediction is easy-to-understand, easy-to-use and model-agnostic and it works under minimal distributional assumptions. Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous uncertainty estimates through repeated sampling or the use of dedicated calibration data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    ConstraintSolver.jl

    ConstraintSolver.jl

    ConstraintSolver in Julia

    This package aims to be a constraint solver completely written in Julia. The concepts are more or less fully described on my blog OpenSourc.es. There is of course also the general user manual here which explains how to solve your model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Convex.jl

    Convex.jl

    A Julia package for disciplined convex programming

    Convex.jl is a Julia package for Disciplined Convex Programming (DCP). Convex.jl makes it easy to describe optimization problems in a natural, mathematical syntax, and to solve those problems using a variety of different (commercial and open-source) solvers. Convex.jl works by transforming the problem—which possibly has nonsmooth, nonlinear constructions like the nuclear norm, the log determinant, and so forth—into a linear optimization problem subject to conic constraints. This reformulation often involves adding auxiliary variables and is called an "extended formulation", since the original problem has been extended with additional variables. These formulations rely on the problem being modeled by combining Convex.jl's "atoms" or primitives according to certain rules which ensure convexity, called the disciplined convex programming (DCP) ruleset. If these atoms are combined in a way that does not ensure convexity, the extended formulations are often invalid.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    CoordinateTransformations.jl

    CoordinateTransformations.jl

    A fresh approach to coordinate transformations

    CoordinateTransformations is a Julia package to manage simple or complex networks of coordinate system transformations. Transformations can be easily applied, inverted, composed, and differentiated (both with respect to the input coordinates and with respect to transformation parameters such as rotation angle). Transformations are designed to be light-weight and efficient enough for, e.g., real-time graphical applications, while support for both explicit and automatic differentiation makes it easy to perform optimization and therefore ideal for computer vision applications such as SLAM (simultaneous localization and mapping).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    CounterfactualExplanations.jl

    CounterfactualExplanations.jl

    A package for Counterfactual Explanations and Algorithmic Recourse

    CounterfactualExplanations.jl is a package for generating Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for black-box algorithms. Both CE and AR are related tools for explainable artificial intelligence (XAI). While the package is written purely in Julia, it can be used to explain machine learning algorithms developed and trained in other popular programming languages like Python and R. See below for a short introduction and other resources or dive straight into the docs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Coverage.jl

    Coverage.jl

    Take Julia code coverage and memory allocation results, do useful thin

    Julia can track how many times, if any, each line of your code is run. This is useful for measuring how much of your code base your tests actually test, and can reveal the parts of your code that are not tested and might be hiding a bug. You can use Coverage.jl to summarize the results of this tracking or to send them to a service like Coveralls.io or Codecov.io. Julia can track how much memory is allocated by each line of your code. This can reveal problems like type instability, or operations that you might have thought were cheap (in terms of memory allocated) but aren't (i.e. accidental copying).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    CuArrays.jl

    CuArrays.jl

    A Curious Cumulation of CUDA Cuisine

    CuArrays provides a fully-functional GPU array, which can give significant speedups over normal arrays without code changes. CuArrays are implemented fully in Julia, making the implementation elegant and extremely generic.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Cubature.jl

    Cubature.jl

    One- and multi-dimensional adaptive integration routines for Julia

    This module provides one- and multi-dimensional adaptive integration routines for the Julia language, including support for vector-valued integrands and facilitation of parallel evaluation of integrands, based on the Cubature Package by Steven G. Johnson. Adaptive integration works by evaluating the integrand at more and more points until the integrand converges to a specified tolerance (with the error estimated by comparing integral estimates with different numbers of points). The Cubature module implements two schemes for this adaptation: h-adaptivity (routines hquadrature, hcubature, hquadrature_v, and hcubature_v) and p-adaptivity (routines pquadrature, pcubature, pquadrature_v, and pcubature_v). The h- and p-adaptive routines accept the same parameters, so you can use them interchangeably, but they have very different convergence characteristics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Cxx.jl

    Cxx.jl

    The Julia C++ Interface

    The Julia C++ Foreign Function Interface (FFI) and REPL. Now, this package provides an out-of-box installation experience on 64-bit Linux, macOS and Windows.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    CxxWrap

    CxxWrap

    Package to make C++ libraries available in Julia

    This package aims to provide a Boost. Python-like wrapping for C++ types and functions to Julia. The idea is to write the code for the Julia wrapper in C++, and then use a one-liner on the Julia side to make the wrapped C++ library available there. The mechanism behind this package is that functions and types are registered in C++ code that is compiled into a dynamic library. This dynamic library is then loaded into Julia, where the Julia part of this package uses the data provided through a C interface to generate functions accessible from Julia. The functions are passed to Julia either as raw function pointers (for regular C++ functions that don't need argument or return type conversion) or std::functions (for lambda expressions and automatic conversion of arguments and return types). The Julia side of this package wraps all this into Julia methods automatically.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DFTK.jl

    DFTK.jl

    Density-functional toolkit

    The density-functional toolkit, DFTK for short, is a collection of Julia routines for experimentation with plane-wave density-functional theory (DFT). The unique feature of this code is its emphasis on simplicity and flexibility with the goal of facilitating algorithmic and numerical developments as well as interdisciplinary collaboration in solid-state research.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DSP.jl

    DSP.jl

    Filter design, periodograms, window functions

    DSP.jl provides a number of common digital signal processing routines in Julia.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DataFrames.jl

    DataFrames.jl

    In-memory tabular data in Julia

    DataFrames.jl is a powerful Julia package for working with in-memory tabular data. It provides a familiar, flexible, and efficient interface for handling datasets, making it easy to load, manipulate, join, and analyze structured data. With syntax inspired by data frames in R and pandas in Python, it offers intuitive tools while taking advantage of Julia’s speed and type system. The package is actively maintained by the JuliaData community, with contributions from over 200 developers worldwide. It is widely used for data science, research, and production applications, supported by extensive documentation, tutorials, and a free Julia Academy course. Cited in academic literature and trusted by practitioners, DataFrames.jl is one of the core libraries for Julia’s growing data ecosystem.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    DataFramesMeta.jl

    DataFramesMeta.jl

    Metaprogramming tools for DataFrames

    Metaprogramming tools for DataFrames.jl objects to provide more convenient syntax. DataFrames.jl has the functions select, transform, and combine, as well as the in-place select! and transform! for manipulating data frames. DataFramesMeta.jl provides the macros @select, @transform, @combine, @select!, and @transform! to mirror these functions with more convenient syntax. Inspired by dplyr in R and LINQ in C#.
    Downloads: 0 This Week
    Last Update:
    See Project