Showing 2 open source projects for "gpu"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    HIPAcc

    HIPAcc

    Heterogeneous Image Processing Acceleration (HIPACC) Framework

    HIPAcc development has moved to github: https://github.com/hipacc HIPAcc allows to design image processing kernels and algorithms in a domain-specific language (DSL). From this high-level description, low-level target code for GPU accelerators is generated using source-to-source translation. As back ends, the framework supports CUDA, OpenCL, and Renderscript. HIPAcc allows programmers to develop imaging applications while providing high productivity, flexibility and portability as well as competitive performance: the same algorithm description serves as basis for targeting different GPU accelerators and low-level languages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    NUDA (= Nemerle Unified Device Architecture) is a set of extensions for Nemerle programming language to facilitate GPU programming and writing HPC applications. Its main purpose is to experiment with extensible languages for HPC applications
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next