Search Results for "math with python learn" - Page 3

174 projects for "math with python learn" with 1 filter applied:

  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1

    PLplot

    Cross-platform, scientific graphics plotting library

    PLplot is a cross-platform, scientific graphics plotting library that supports math symbols and human languages (via UTF-8 user input strings); plot capabilities for multiple non-interactive plot file formats and in multiple interactive environments; and bindings for multiple computer languages.
    Leader badge
    Downloads: 65 This Week
    Last Update:
    See Project
  • 2
    Self-learning-Computer-Science

    Self-learning-Computer-Science

    Resources to learn computer science in your spare time

    Self-learning Computer Science is a curated, open-source guide repository designed to help learners independently study computer science topics using high-quality university-level resources. The author (an undergraduate CS student) assembled links to courses from institutions like MIT, UC Berkeley, Stanford, etc., covering mathematics, programming, data structures/algorithms, computer architecture, machine learning, software engineering and more. It’s aimed at learners who find traditional...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    UnionML

    UnionML

    Build and deploy machine learning microservices

    Creating ML apps should be simple and frictionless. UnionML is an open-source Python framework built on top of Flyte™, unifying the complex ecosystem of ML tools into a single interface. Combine the tools that you love using a simple, standardized API so you can stop writing so much boilerplate and focus on what matters: the data and the models that learn from them. Fit the rich ecosystem of tools and frameworks into a common protocol for machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    d2l-zh

    d2l-zh

    Chinese-language edition of Dive into Deep Learning

    d2l‑zh is the Chinese-language edition of Dive into Deep Learning, an interactive, open‑source deep learning textbook that combines code, math, and explanatory text. It features runnable Jupyter notebooks compatible with multiple frameworks (e.g., PyTorch, MXNet, TensorFlow), comprehensive theoretical analysis, and exercises. Widely adopted in over 70 countries and used by more than 500 universities for teaching deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    Shennina

    Shennina

    Automating Host Exploitation with AI

    Shennina is an automated host exploitation framework. The mission of the project is to fully automate the scanning, vulnerability scanning/analysis, and exploitation using Artificial Intelligence. Shennina is integrated with Metasploit and Nmap for performing the attacks, as well as being integrated with an in-house Command-and-Control Server for exfiltrating data from compromised machines automatically. Shennina scans a set of input targets for available network services, uses its AI engine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    handson-ml

    handson-ml

    Teaching you the fundamentals of Machine Learning in python

    handson-ml hosts the notebooks for the first edition of the same hands-on ML book, reflecting the tooling and idioms of its time while teaching durable concepts. It walks through supervised and unsupervised learning with scikit-learn, then introduces deep learning using the earlier TensorFlow 1 graph-execution style. The examples underscore fundamentals like bias-variance trade-offs, regularization, and proper validation, grounding learners before they move to deep nets. Even though the deep...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Video Pre-Training

    Video Pre-Training

    Learning to Act by Watching Unlabeled Online Videos

    The Video PreTraining (VPT) repository provides code and model artifacts for a project where agents learn to act by watching human gameplay videos—specifically, gameplay of Minecraft—using behavioral cloning. The idea is to learn general priors of control from large-scale, unlabeled video data, and then optionally fine-tune those priors for more goal-directed behavior via environment interaction. The repository contains demonstration models of different widths, fine-tuned variants (e.g. for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Reskin Sensor Library

    Reskin Sensor Library

    ReSkin Sensor Interfacing Library

    Soft sensors have continued growing interest in robotics, due to their ability to enable both passive conformal contact from the material properties and active contact data from the sensor properties. However, the same properties of conformal contact result in faster deterioration of soft sensors and larger variations in their response characteristics over time and across samples, inhibiting their ability to be long-lasting and replaceable. ReSkin is a tactile soft sensor that leverages...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    Awesome Conformal Prediction

    Awesome Conformal Prediction

    A professionally curated list of awesome Conformal Prediction videos

    awesome-conformal-prediction is a curated “awesome list” repository on GitHub collecting high-quality resources related to conformal prediction: tutorials, books, papers, theses, open-source libraries, videos, and other educational material. It is not a software library itself but a directory of resources for those wanting to learn or work with conformal prediction and uncertainty quantification. This exceptional resource is the culmination of my PhD journey in Machine Learning, specializing...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Grade School Math

    Grade School Math

    8.5K high quality grade school math problems

    The grade-school-math repository (sometimes called GSM8K) is a curated dataset of 8,500 high-quality grade school math word problems intended for evaluating mathematical reasoning capabilities of language models. It is structured into 7,500 training problems and 1,000 test problems. These aren’t trivial exercises — many require multi-step reasoning, combining arithmetic operations, and handling intermediate steps (e.g. “If she sold half as many in May… how many in total?”). The problems are...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    PS-Drone

    PS-Drone

    Programming a Parrot AR.Drone 2.0 with Python - The Easy Way

    The PS-Drone-API is a full featured SDK, written in and for Python, for Parrot's AR.Drone 2.0. It was designed to be easy to learn, but it offers the full set of the possibilities of the AR.Drone 2.0, including Sensor-Data (aka NavData), Configuration and full Video-support. The video function is not restricted to mere viewing, it is also possible to analyze video images data using OpenCV2.
    Leader badge
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Data Science Notes

    Data Science Notes

    Curated collection of data science learning materials

    Data Science Notes is a large, curated collection of data science learning materials, with explanations, code snippets, and structured notes across the typical end-to-end workflow. It spans foundational math and statistics through data wrangling, visualization, machine learning, and practical project organization. The content emphasizes hands-on understanding by pairing narrative notes with runnable examples, making it useful for both self-study and classroom settings. Because it aggregates...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Tux Math Scrabble

    Tux Math Scrabble

    12÷16×3=9÷4

    Latest version 0.9.1 runs on Python3. Date: June 15, 2023 Online/touch-screen version: https://www.asymptopia.com/tuxmathscrabble Encourages kids to construct compound equations and consider multiple abstract possibilities.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 15
    gditools

    gditools

    A Python program/library aimed at GD-ROM image files.

    This Python program/library is designed to handle GD-ROM image (GDI) files. It can be used to list files, extract data, generate sorttxt file, extract bootstrap (IP.BIN) file and more. This project can be used in standalone mode, in interactive mode or as a library in another Python program (check the 'addons' folder to learn how). For your convenience, you can use the gditools.py GUI program supplied in the Files section (optional).
    Leader badge
    Downloads: 10 This Week
    Last Update:
    See Project
  • 16
    Scikit-learn Tutorial

    Scikit-learn Tutorial

    An introductory tutorial for scikit-learn

    Scikit-learn Tutorial contains the materials for Jake VanderPlas’s introductory scikit-learn tutorial, originally used at major Python conferences. It provides a collection of notebooks that walk attendees from basic machine-learning concepts into practical modeling using the scikit-learn library. The tutorial covers data preparation, model fitting, evaluation, and common algorithms such as classification, regression, clustering, and dimensionality reduction. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    TF Quant Finance

    TF Quant Finance

    High-performance TensorFlow library for quantitative finance

    TF Quant Finance is a high-performance library of quantitative finance components built on TensorFlow, aimed at research and production workloads. It implements pricing engines, risk measures, stochastic models, optimizers, and random number generators that are differentiable and vectorized for accelerators. Users can value options and fixed-income instruments, simulate paths, fit curves, and calibrate models while leveraging TensorFlow’s jit compilation and automatic differentiation. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    CCZero (中国象棋Zero)

    CCZero (中国象棋Zero)

    Implement AlphaZero/AlphaGo Zero methods on Chinese chess

    ChineseChess-AlphaZero is a project that implements the AlphaZero algorithm for the game of Chinese Chess (Xiangqi). It adapts DeepMind’s AlphaZero method—combining neural networks and Monte Carlo Tree Search (MCTS)—to learn and play Chinese Chess without prior human data. The system includes self-play, training, and evaluation pipelines tailored to Xiangqi's unique game mechanics.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    UnsupervisedMT

    UnsupervisedMT

    Phrase-Based & Neural Unsupervised Machine Translation

    Unsupervised Machine Translation is a research repository that implements both phrase-based SMT and neural MT approaches for translation without parallel corpora. The neural component supports multiple architectures—seq2seq, biLSTM with attention, and Transformer—and allows extensive parameter sharing across languages to improve data efficiency. Training relies on denoising auto-encoding and back-translation, with on-the-fly, multithreaded generation of synthetic parallel data to continually...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    data-science-ipython-notebooks

    data-science-ipython-notebooks

    Data science Python notebooks: Deep learning

    Data Science IPython Notebooks is a broad, curated set of Jupyter notebooks covering Python, data wrangling, visualization, machine learning, deep learning, and big data tools. It aims to be a practical map of the ecosystem, showing hands-on examples with libraries such as NumPy, pandas, matplotlib, scikit-learn, and others. Many notebooks introduce concepts step by step, then apply them to real datasets so readers can see techniques in action.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Learn_Data_Science_in_3_Months

    Learn_Data_Science_in_3_Months

    This is the Curriculum for "Learn Data Science in 3 Months"

    This project lays out a 12-week plan to go from basics to a portfolio-ready understanding of data science. It breaks the journey into clear stages: Python fundamentals, data wrangling, visualization, statistics, machine learning, and end-to-end projects. The schedule mixes learning and doing, encouraging you to build small deliverables each week—like notebooks, dashboards, and model demos—to reinforce skills. It also includes suggestions for datasets and problem domains so you aren’t stuck...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Awesome Math

    Awesome Math

    This is the Curriculum for "How to Learn Mathematics Fast"

    ...The structure is useful both for newcomers who want a starting plan and for practitioners filling specific gaps before tackling ML or deep learning. Overall, it acts as a compact study plan that turns “learn math” from a vague goal into a concrete, achievable path.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    InfoGAN

    InfoGAN

    Code for reproducing key results in the paper

    The InfoGAN repository contains the original implementation used to reproduce the results in the paper “InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets”. InfoGAN is a variant of the GAN (Generative Adversarial Network) architecture that aims to learn disentangled and interpretable latent representations by maximizing the mutual information between a subset of the latent codes and the generated outputs. That extra incentive encourages the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Functional, Data Science Intro To Python

    Functional, Data Science Intro To Python

    [tutorial]A functional, Data Science focused introduction to Python

    The first section is an intentionally brief, functional, data science-centric introduction to Python. The assumption is a someone with zero experience in programming can follow this tutorial and learn Python with the smallest amount of information possible. The sections after that, involve varying levels of difficulty and cover topics as diverse as Machine Learning, Linear Optimization, build systems, command line tools, recommendation engines, Sentiment Analysis and Cloud Computing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Learn_Machine_Learning_in_3_Months

    Learn_Machine_Learning_in_3_Months

    This is the code for "Learn Machine Learning in 3 Months"

    This repository outlines an ambitious self-study curriculum for learning machine learning in roughly three months, emphasizing breadth, momentum, and hands-on practice. It sequences core topics—math foundations, classic ML, deep learning, and applied projects—so learners can pace themselves week by week. The plan mixes reading, lectures, coding assignments, and small build-it-yourself projects to reinforce understanding through repetition and implementation. Because ML is a wide field, the...
    Downloads: 0 This Week
    Last Update:
    See Project