Showing 1866 open source projects for "python linux"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    Text Generation Inference

    Text Generation Inference

    Large Language Model Text Generation Inference

    Text Generation Inference is a high-performance inference server for text generation models, optimized for Hugging Face's Transformers. It is designed to serve large language models efficiently with optimizations for performance and scalability.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    NeMo Curator

    NeMo Curator

    Scalable data pre processing and curation toolkit for LLMs

    NeMo Curator is a Python library specifically designed for fast and scalable dataset preparation and curation for large language model (LLM) use-cases such as foundation model pretraining, domain-adaptive pretraining (DAPT), supervised fine-tuning (SFT) and paramter-efficient fine-tuning (PEFT). It greatly accelerates data curation by leveraging GPUs with Dask and RAPIDS, resulting in significant time savings. The library provides a customizable and modular interface, simplifying pipeline...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    segment-geospatial

    segment-geospatial

    A Python package for segmenting geospatial data with the SAM

    The segment-geospatial package draws its inspiration from segment-anything-eo repository authored by Aliaksandr Hancharenka. To facilitate the use of the Segment Anything Model (SAM) for geospatial data, I have developed the segment-anything-py and segment-geospatial Python packages, which are now available on PyPI and conda-forge. My primary objective is to simplify the process of leveraging SAM for geospatial data analysis by enabling users to achieve this with minimal coding effort. I...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    VectorDB

    VectorDB

    A Python vector database you just need, no more, no less

    vectordb is a Pythonic vector database offers a comprehensive suite of CRUD (Create, Read, Update, Delete) operations and robust scalability options, including sharding and replication. It's readily deployable in a variety of environments, from local to on-premise and cloud. vectordb delivers exactly what you need - no more, no less. It's a testament to effective Pythonic design without over-engineering, making it a lean yet powerful solution for all your needs. vectordb capitalizes on the...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Nonprofit Budgeting Software Icon
    Nonprofit Budgeting Software

    Martus Solutions provides seamless budgeting, reporting, and forecasting tools that integrate with accounting systems for real-time financial insights

    Martus' collaborative and easy-to-use budgeting and reporting platform will save you hundreds of hours each year. It's designed to make the entire budgeting process easier and create unlimited financial transparency.
    Learn More
  • 5
    Kaleidoscope-SDK

    Kaleidoscope-SDK

    User toolkit for analyzing and interfacing with Large Language Models

    kaleidoscope-sdk is a Python module used to interact with large language models hosted via the Kaleidoscope service available at: https://github.com/VectorInstitute/kaleidoscope. It provides a simple interface to launch LLMs on an HPC cluster, asking them to perform basic features like text generation, but also retrieve intermediate information from inside the model, such as log probabilities and activations. Users must authenticate using their Vector Institute cluster credentials. This can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    AgentRun

    AgentRun

    The easiest, and fastest way to run AI-generated Python code safely

    AgentRun is a framework for building autonomous AI agents capable of executing complex tasks with minimal human intervention. It provides a structured environment for defining agent behaviors, managing workflows, and integrating AI models to achieve specific goals.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Phidata

    Phidata

    Build multi-modal Agents with memory, knowledge, tools and reasoning

    Phidata is an open source platform for building, deploying, and monitoring AI agents. It enables users to create domain-specific agents with memory, knowledge, and external tools, enhancing AI capabilities for various tasks. The platform supports a range of large language models and integrates seamlessly with different databases, vector stores, and APIs. Phidata offers pre-configured templates to accelerate development and deployment, allowing users to quickly go from building agents to...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 8
    Guidance

    Guidance

    A guidance language for controlling large language models

    Guidance is an efficient programming paradigm for steering language models. With Guidance, you can control how output is structured and get high-quality output for your use case—while reducing latency and cost vs. conventional prompting or fine-tuning. It allows users to constrain generation (e.g. with regex and CFGs) as well as to interleave control (conditionals, loops, tool use) and generation seamlessly.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Shapash

    Shapash

    Explainability and Interpretability to Develop Reliable ML models

    Shapash is a Python library dedicated to the interpretability of Data Science models. It provides several types of visualization that display explicit labels that everyone can understand. Data Scientists can more easily understand their models, share their results and easily document their projects in an HTML report. End users can understand the suggestion proposed by a model using a summary of the most influential criteria.
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Original Buy Center Software. Icon
    The Original Buy Center Software.

    Never Go To The Auction Again.

    VAN sources private-party vehicles from over 20 platforms and provides all necessary tools to communicate with sellers and manage opportunities. Franchise and Independent dealers can boost their buy center strategies with our advanced tools and an experienced Acquisition Coaching™ team dedicated to your success.
    Learn More
  • 10
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    darts is a Python library for easy manipulation and forecasting of time series. It contains a variety of models, from classics such as ARIMA to deep neural networks. The models can all be used in the same way, using fit() and predict() functions, similar to scikit-learn. The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account. Darts supports both univariate and multivariate time series and models. The ML-based models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Pyro

    Pyro

    Deep universal probabilistic programming with Python and PyTorch

    Pyro is a flexible, universal probabilistic programming language (PPL) built on PyTorch. It allows for expressive deep probabilistic modeling, combining the best of modern deep learning and Bayesian modeling. Pyro is centered on four main principles: Universal, Scalable, Minimal and Flexible. Pyro is universal in that it can represent any computable probability distribution. It scales easily to large datasets with minimal overhead, and has a small yet powerful core of composable...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    VikingDB MCP Server

    VikingDB MCP Server

    A mcp server for vikingdb store and search

    An MCP server that interfaces with VikingDB, a high-performance vector database developed by ByteDance, enabling efficient vector storage and search capabilities. ​
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    GraphRAG

    GraphRAG

    A modular graph-based Retrieval-Augmented Generation (RAG) system

    The GraphRAG project is a data pipeline and transformation suite that is designed to extract meaningful, structured data from unstructured text using the power of LLMs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    fklearn

    fklearn

    Functional Machine Learning

    fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    ...In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm. Gain the lowest memory usage when inferencing a model by leveraging our unique pushdown memory planner. NOTE: MegEngine now supports Python installation on Linux-64bit/Windows-64bit/MacOS(CPU-Only)-10.14+/Android 7+(CPU-Only) platforms with Python from 3.5 to 3.8. On Windows 10 you can either install the Linux distribution through Windows Subsystem for Linux (WSL) or install the Windows distribution directly. Many other platforms are supported for inference.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 16
    Sourcery AI Code Review

    Sourcery AI Code Review

    Instant AI code reviews

    Sourcery is an AI-powered code assistant designed to help developers write cleaner, more maintainable Python code by suggesting real-time refactorings, improvements, and best-practice rewrites directly in popular editors and IDEs. Instead of just offering autocomplete, Sourcery analyzes existing functions and code patterns to provide context-aware suggestions that can simplify logic, reduce duplication, improve naming, and correct anti-patterns, helping developers adhere to idiomatic style...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 17
    LatentSync

    LatentSync

    Taming Stable Diffusion for Lip Sync

    LatentSync is an open-source framework from ByteDance that produces high-quality lip-synchronization for video by using an audio-conditioned latent diffusion model, bypassing traditional intermediate motion representations. In effect, given a source video (with masked or reference frames) and an audio track, LatentSync directly generates frames whose lip motions and expressions align with the audio, producing convincing talking-head or animated lip-sync output. The system leverages a U-Net...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 18
    Simple Evals

    Simple Evals

    Lightweight framework for evaluating large language model performance

    simple-evals is a lightweight evaluation framework developed by OpenAI for quickly testing models against small, focused benchmarks. It is designed to help researchers and developers run targeted evaluations without the complexity of large-scale pipelines. By emphasizing simplicity, the framework makes it easy to define new tasks, run evaluations, and interpret results in a reproducible way. It is particularly useful for sanity checks, exploratory research, and comparing performance across...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    Ragas

    Ragas

    Supercharge Your LLM Application Evaluations

    Objective metrics, intelligent test generation, and data-driven insights for LLM apps. Ragas is your ultimate toolkit for evaluating and optimizing Large Language Model (LLM) applications. Say goodbye to time-consuming, subjective assessments and hello to data-driven, efficient evaluation workflows. Don't have a test dataset ready? We also do production-aligned test set generation.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    InvokeAI

    InvokeAI

    InvokeAI is a leading creative engine for Stable Diffusion models

    InvokeAI is an implementation of Stable Diffusion, the open source text-to-image and image-to-image generator. It provides a streamlined process with various new features and options to aid the image generation process. It runs on Windows, Mac and Linux machines, and runs on GPU cards with as little as 4 GB or RAM. InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies....
    Downloads: 10 This Week
    Last Update:
    See Project
  • 21
    Code-Mode

    Code-Mode

    Plug-and-play library to enable agents to call MCP and UTCP tools

    Code-Mode is a plug-and-play library that lets AI agents call tools by executing TypeScript (or via a Python wrapper) instead of making many individual function calls. Its core philosophy is that language models are very good at writing code, so rather than exposing hundreds of separate tool endpoints, you give the model a single “code execution” tool that has access to your full toolkit through code. This approach can dramatically reduce the number of tool-call iterations needed in complex...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    fastai

    fastai

    Deep learning library

    fastai is a deep learning library which provides practitioners with high-level components that can quickly and easily provide state-of-the-art results in standard deep learning domains, and provides researchers with low-level components that can be mixed and matched to build new approaches. It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    StyleTTS 2

    StyleTTS 2

    Towards Human-Level Text-to-Speech through Style Diffusion

    StyleTTS2 is a state-of-the-art text-to-speech system that aims for human-level naturalness by combining style diffusion, adversarial training, and large speech language models. It extends the original StyleTTS idea by introducing a style diffusion model that can sample rich, realistic speaking styles conditioned on reference speech, allowing highly expressive and diverse prosody. The architecture uses a two-stage training process and leverages an auxiliary speech language model to guide...
    Downloads: 7 This Week
    Last Update:
    See Project