Showing 33 open source projects for "network graph analysis"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    TrustGraph

    TrustGraph

    Deploy reasoning AI agents powered by agentic graph RAG in minutes

    TrustGraph is an AI-driven framework designed to assess and visualize trust relationships within networks, aiding in the analysis of trustworthiness and influence among entities.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Materials Discovery: GNoME

    Materials Discovery: GNoME

    AI discovers 520000 stable inorganic crystal structures for research

    Materials Discovery (GNoME) is a large-scale research initiative by Google DeepMind focused on applying graph neural networks to accelerate the discovery of stable inorganic crystal materials. The project centers on Graph Networks for Materials Exploration (GNoME), a message-passing neural network architecture trained on density functional theory (DFT) data to predict material stability and energy formation. Using GNoME, DeepMind identified 381,000 new stable materials, later expanding the dataset to include over 520,000 materials within 1 meV/atom of the convex hull as of August 2024. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • 5
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    ...DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal structures, root cause analysis, interventions and counterfactuals. DoWhy builds on two of the most powerful frameworks for causal inference: graphical causal models and potential outcomes. For effect estimation, it uses graph-based criteria and do-calculus for modeling assumptions and identifying a non-parametric causal effect. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    MCP ZoomEye

    MCP ZoomEye

    A Model Context Protocol server that provides network asset info

    The ZoomEye MCP Server is a Model Context Protocol server that provides network asset information based on query conditions, allowing Large Language Models to obtain data by querying ZoomEye using dorks and other search parameters. ​
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    DeepVariant

    DeepVariant

    DeepVariant is an analysis pipeline that uses a deep neural networks

    DeepVariant is an analysis pipeline that uses a deep neural network to call genetic variants from next-generation DNA sequencing data. DeepVariant is a deep learning-based variant caller that takes aligned reads (in BAM or CRAM format), produces pileup image tensors from them, classifies each tensor using a convolutional neural network, and finally reports the results in a standard VCF or gVCF file.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    FlowLens MCP

    FlowLens MCP

    Open-source MCP server that gives your coding agent

    FlowLens MCP Server is an open-source tool designed to give AI-powered coding agents (like Claude Code, Cursor, GitHub Copilot / Codex, and others) full, replayable browser context to dramatically improve debugging, bug reporting, and regression testing for web applications. It works together with a companion browser extension: when a user reproduces a bug or a complicated UI interaction, the extension captures a rich session log, including screen/video recording, network traffic, console...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    funNLP

    funNLP

    Resources, corpora, and tools for Chinese natural language processing

    FunNLP is a large, curated collection of resources, corpora, and tools for Chinese natural language processing (NLP). It aggregates datasets, lexicons, wordlists, sentiment dictionaries, knowledge graphs, and pretrained model references, serving as a one-stop resource hub for Chinese NLP practitioners. The repository is organized into categories such as sentiment analysis, text classification, named entity recognition, knowledge graphs, and various lexicons (e.g. sensitive words, emotion...
    Downloads: 0 This Week
    Last Update:
    See Project
  • DAT Freight and Analytics - DAT Icon
    DAT Freight and Analytics - DAT

    DAT Freight and Analytics operates DAT One truckload freight marketplace

    DAT Freight & Analytics operates DAT One, North America’s largest truckload freight marketplace; DAT iQ, the industry’s leading freight data analytics service; and Trucker Tools, the leader in load visibility. Shippers, transportation brokers, carriers, news organizations, and industry analysts rely on DAT for market trends and data insights, informed by nearly 700,000 daily load posts and a database exceeding $1 trillion in freight market transactions. Founded in 1978, DAT is a business unit of Roper Technologies (Nasdaq: ROP), a constituent of the Nasdaq 100, S&P 500, and Fortune 1000. Headquartered in Beaverton, Ore., DAT continues to set the standard for innovation in the trucking and logistics industry.
    Learn More
  • 10
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    hloc

    hloc

    Visual localization made easy with hloc

    ...It implements Hierarchical Localization, leveraging image retrieval and feature matching, and is fast, accurate, and scalable. This codebase won the indoor/outdoor localization challenges at CVPR 2020 and ECCV 2020, in combination with SuperGlue, our graph neural network for feature matching. We provide step-by-step guides to localize with Aachen, InLoc, and to generate reference poses for your own data using SfM. Just download the datasets and you're reading to go! The notebook pipeline_InLoc.ipynb shows the steps for localizing with InLoc. It's much simpler since a 3D SfM model is not needed. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Karate Club

    Karate Club

    An API Oriented Open-source Python Framework for Unsupervised Learning

    Karate Club is an unsupervised machine learning extension library for NetworkX. Karate Club consists of state-of-the-art methods to do unsupervised learning on graph-structured data. To put it simply it is a Swiss Army knife for small-scale graph mining research. First, it provides network embedding techniques at the node and graph level. Second, it includes a variety of overlapping and non-overlapping community detection methods. Implemented methods cover a wide range of network science (NetSci, Complenet), data mining (ICDM, CIKM, KDD), artificial intelligence (AAAI, IJCAI) and machine learning (NeurIPS, ICML, ICLR) conferences, workshops, and pieces from prominent journals.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DeepImageTranslator

    DeepImageTranslator

    DeepImageTranslator: a deep-learning utility for image translation

    Created by: Run Zhou Ye, En Zhou Ye, and En Hui Ye DeepImageTranslator: a free, user-friendly tool for image translation using deep-learning and its applications in CT image analysis Citation: Please cite this software as: Ye RZ, Noll C, Richard G, Lepage M, Turcotte ÉE, Carpentier AC. DeepImageTranslator: a free, user-friendly graphical interface for image translation using deep-learning and its applications in 3D CT image analysis. SLAS technology. 2022 Feb 1;27(1):76-84....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    CapsGNN

    CapsGNN

    A PyTorch implementation of "Capsule Graph Neural Network"

    ...Inspired by the Capsule Neural Network (CapsNet), we propose the Capsule Graph Neural Network (CapsGNN), which adopts the concept of capsules to address the weakness in existing GNN-based graph embeddings algorithms. By extracting node features in the form of capsules, routing mechanism can be utilized to capture important information at the graph level. As a result, our model generates multiple embeddings for each graph to capture graph properties from different aspects.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Minkowski Engine

    Minkowski Engine

    Auto-diff neural network library for high-dimensional sparse tensors

    The Minkowski Engine is an auto-differentiation library for sparse tensors. It supports all standard neural network layers such as convolution, pooling, unspooling, and broadcasting operations for sparse tensors. The Minkowski Engine supports various functions that can be built on a sparse tensor. We list a few popular network architectures and applications here. To run the examples, please install the package and run the command in the package root directory. Compressing a neural network to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Awesome Graph Classification

    Awesome Graph Classification

    Graph embedding, classification and representation learning papers

    A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations. Relevant graph classification benchmark datasets are available. Similar collections about community detection, classification/regression tree, fraud detection, Monte Carlo tree search, and gradient boosting papers with implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    CRSLab

    CRSLab

    CRSLab is an open-source toolkit

    ...It is developed based on Python and PyTorch. CRSLab has the following highlights. Comprehensive benchmark models and datasets: We have integrated commonly-used 6 datasets and 18 models, including graph neural network and pre-training models such as R-GCN, BERT and GPT-2. We have preprocessed these datasets to support these models, and release for downloading. Extensive and standard evaluation protocols: We support a series of widely-adopted evaluation protocols for testing and comparing different CRS. General and extensible structure: We design a general and extensible structure to unify various conversational recommendation datasets and models, in which we integrate various built-in interfaces and functions for quickly development. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    ...Easy-to-use and understand high-level API for implementing deep neural networks, with tutorials and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, and metrics. Full transparency over Tensorflow. All functions are built over tensors and can be used independently of TFLearn. Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs, and optimizers. Easy and beautiful graph visualization, with details about weights, gradients, activations, and more. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Neural Networks Collection

    Neural Networks Collection

    Neural Networks Collection

    This project implements in C++ a bunch of known Neural Networks. So far the project implements: LVQ in several variants, SOM in several variants, Hopfield network and Perceptron. Other neural network types are planned, but not implemented yet. The project can run in two modes: command line tool and Python 7.2 extension. Currently, Python version appears more functional, as it allows easy interaction with algorithms developed by other people.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    ...Built-in Loader and Pipe for multiple datasets, eliminating the need for preprocessing code. Various convenient NLP tools, such as Embedding loading (including ELMo and BERT), intermediate data cache, etc.. Provide a variety of neural network components and recurrence models (covering tasks such as Chinese word segmentation, named entity recognition, syntactic analysis, text classification, text matching, metaphor resolution, summarization, etc.). Trainer provides a variety of built-in Callback functions to facilitate experiment recording, exception capture, etc. Automatic download of some datasets and pre-trained models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    StellarGraph

    StellarGraph

    Machine Learning on Graphs

    StellarGraph is a Python library for machine learning on graphs and networks. The StellarGraph library offers state-of-the-art algorithms for graph machine learning, making it easy to discover patterns and answer questions about graph-structured data. It can solve many machine learning tasks. Graph-structured data represent entities as nodes (or vertices) and relationships between them as edges (or links), and can include data associated with either as attributes. For example, a graph can contain people as nodes and friendships between them as links, with data like a person’s age and the date a friendship was established. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Delta ML

    Delta ML

    Deep learning based natural language and speech processing platform

    ...DELTA has been used for developing several state-of-the-art algorithms for publications and delivering real production to serve millions of users. It helps you to train, develop, and deploy NLP and/or speech models. Use configuration files to easily tune parameters and network structures. What you see in training is what you get in serving: all data processing and features extraction are integrated into a model graph. Text classification, named entity recognition, question and answering, text summarization, etc. Uniform I/O interfaces and no changes for new models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    jieba

    jieba

    Stuttering Chinese word segmentation

    "Jaba" Chinese word segmentation, do the best Python Chinese word segmentation component. Four word segmentation modes are supported. Precise mode, which tries to cut the sentence most precisely, suitable for text analysis. Full mode, scans all the words that can be formed into words in the sentence, the speed is very fast, but the ambiguity cannot be resolved. The search engine mode, on the basis of the precise mode, divides the long words again to improve the recall rate, which is suitable for word segmentation in search engines. The paddle mode uses the PaddlePaddle deep learning framework to train the sequence labeling (bidirectional GRU) network model to achieve word segmentation. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next