Showing 40 open source projects for "fast performance"

View related business solutions
  • Vibes don’t ship, Retool does Icon
    Vibes don’t ship, Retool does

    Start from a prompt and build production-ready apps on your data—with security, permissions, and compliance built in.

    Vibe coding tools create cool demos, but Retool helps you build software your company can actually use. Generate internal apps that connect directly to your data—deployed in your cloud with enterprise security from day one. Build dashboards, admin panels, and workflows with granular permissions already in place. Stop prototyping and ship on a platform that actually passes security review.
    Build apps that ship
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1
    BitNet

    BitNet

    Inference framework for 1-bit LLMs

    BitNet (bitnet.cpp) is a high-performance inference framework designed to optimize the execution of 1-bit large language models, making them more efficient for edge devices and local deployment. The framework offers significant speedups and energy reductions, achieving up to 6.17x faster performance on x86 CPUs and 70% energy savings, allowing the running of models such as the BitNet b1.58 100B with impressive efficiency. With support for lossless inference and enhanced processing power,...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    MLX-Audio

    MLX-Audio

    A text-to-speech, speech-to-text and speech-to-speech library

    ...It focuses on text-to-speech and speech-to-speech workflows, with APIs and a command-line interface that make it easy to generate high-quality audio from text. Because it uses MLX and targets Apple Silicon, inference is fast and can take advantage of hardware acceleration and quantization for efficient on-device performance. The project provides a straightforward CLI (mlx_audio.tts.generate) as well as a Python API for programmatic generation of audio, including parameters for voice choice, speed, language hints, output format, and sample rate. It includes examples such as audiobook generation to demonstrate long-form synthesis and joined audio segments. ...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 3
    GLM-4.5

    GLM-4.5

    GLM-4.5: Open-source LLM for intelligent agents by Z.ai

    GLM-4.5 is a cutting-edge open-source large language model designed by Z.ai for intelligent agent applications. The flagship GLM-4.5 model has 355 billion total parameters with 32 billion active parameters, while the compact GLM-4.5-Air version offers 106 billion total parameters and 12 billion active parameters. Both models unify reasoning, coding, and intelligent agent capabilities, providing two modes: a thinking mode for complex reasoning and tool usage, and a non-thinking mode for...
    Downloads: 134 This Week
    Last Update:
    See Project
  • 4
    FLAML

    FLAML

    A fast library for AutoML and tuning

    FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks. It is easy to customize or extend. Users can find their...
    Downloads: 7 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Memobase

    Memobase

    Fast backend for long-term AI user memory via structured profiles

    Memobase is an open source backend system that enables long-term user memory functionality for AI applications by capturing and structuring information about users across interactions. Its design centers on creating user profiles and recording event timelines, allowing AI systems to remember, understand, and evolve in their behaviour toward individual users over time. Instead of relying purely on traditional embedding-based retrieval or RAG systems, Memobase uses profile and timeline...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 7
    DFlash

    DFlash

    Block Diffusion for Ultra-Fast Speculative Decoding

    DFlash is an open-source framework for ultra-fast speculative decoding using a lightweight block diffusion model to draft text in parallel with a target large language model, dramatically improving inference speed without sacrificing generation quality. It acts as a “drafter” that proposes likely continuations which the main model then verifies, enabling significant throughput gains compared to traditional autoregressive decoding methods that generate token by token.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    StatsForecast

    StatsForecast

    Fast forecasting with statistical and econometric models

    StatsForecast is a Python library for time-series forecasting that delivers a suite of classical statistical and econometric forecasting models optimized for high performance and scalability. It is designed not just for academic experiments but for production-level time-series forecasting, meaning it handles forecasting for many series at once, efficiently, reliably, and with minimal overhead. The library implements a broad set of models, including AutoARIMA, ETS, CES, Theta, plus a battery...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    Are you looking to enhance your trading strategies with the power of Python and machine learning? Then you need to check out PyBroker! This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    LightAutoML

    LightAutoML

    Fast and customizable framework for automatic ML model creation

    LightAutoML is an automated machine learning (AutoML) framework optimized for efficient model training and hyperparameter tuning, focusing on both tabular and text data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    BioNeMo

    BioNeMo

    BioNeMo Framework: For building and adapting AI models

    BioNeMo is an AI-powered framework developed by NVIDIA for protein and molecular generation using deep learning models. It provides researchers and developers with tools to design, analyze, and optimize biological molecules, aiding in drug discovery and synthetic biology applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    SciSpaCy

    SciSpaCy

    A full spaCy pipeline and models for scientific/biomedical documents

    ScispaCy is a spaCy extension optimized for processing biomedical and scientific text, providing domain-specific NLP models for tasks like named entity recognition (NER) and dependency parsing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Scrapling

    Scrapling

    An undetectable, powerful, flexible, high-performance Python library

    Scrapling is a Python scraping framework built for the modern web, combining high-performance fetchers with a rapid parsing engine to handle dynamic sites and anti-bot countermeasures. It emphasizes being “undetectable,” flexible, and fast, offering an approachable API for both experienced scrapers and newcomers. The library targets the full scraping pipeline: session handling, fetching, rendering when needed, parsing, and export—while keeping ergonomics front and center. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Sopro TTS

    Sopro TTS

    A lightweight text-to-speech model with zero-shot voice cloning

    ...Built with a 169 million-parameter architecture that uses dilated convolutions and cross-attention layers instead of large Transformer stacks, it achieves relatively fast real-time performance even on CPUs (about a 0.25 real-time factor measured on an M3 base). The model is designed to work with a small set of dependencies and to be accessible for developers who want offline TTS with customizable voice style, including options for streaming or non-streaming generation modes. Users can install it with standard Python tools, run a demo server locally, and experiment with CLI or Python API usage for producing synthetic speech.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Tiktoken

    Tiktoken

    tiktoken is a fast BPE tokeniser for use with OpenAI's models

    tiktoken is a high-performance, tokenizer library (based on byte-pair encoding, BPE) designed for use with OpenAI’s models. It handles encoding and decoding text to token IDs efficiently, with minimal overhead. Because tokenization is a fundamental step in preparing text for models, tiktoken is optimized for speed, memory, and correctness in model contexts (e.g. matching OpenAI’s internal tokenization). The repo supports multiple encodings (e.g. “cl100k_base”) and lets users switch encoding...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    HDBSCAN

    HDBSCAN

    A high performance implementation of HDBSCAN clustering

    HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates the result to find a clustering that gives the best stability over epsilon. This allows HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more robust to parameter selection. In practice this means that HDBSCAN returns a good clustering straight away with little or no parameter tuning -- and the primary parameter, minimum cluster...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    Foolbox

    Foolbox

    Python toolbox to create adversarial examples

    Foolbox: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX. Foolbox 3 is built on top of EagerPy and runs natively in PyTorch, TensorFlow, and JAX. Foolbox provides a large collection of state-of-the-art gradient-based and decision-based adversarial attacks. Catch bugs before running your code thanks to extensive type annotations in Foolbox. Foolbox is a Python library that lets you easily run adversarial attacks against machine...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    NeuralForecast

    NeuralForecast

    Scalable and user friendly neural forecasting algorithms.

    NeuralForecast offers a large collection of neural forecasting models focusing on their performance, usability, and robustness. The models range from classic networks like RNNs to the latest transformers: MLP, LSTM, GRU, RNN, TCN, TimesNet, BiTCN, DeepAR, NBEATS, NBEATSx, NHITS, TiDE, DeepNPTS, TSMixer, TSMixerx, MLPMultivariate, DLinear, NLinear, TFT, Informer, AutoFormer, FedFormer, PatchTST, iTransformer, StemGNN, and TimeLLM. There is a shared belief in Neural forecasting methods'...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    Audiblez

    Audiblez

    Generate audiobooks from e-books

    Audiblez is a tool for generating high-quality .m4b audiobooks directly from .epub e-books using the Kokoro-82M neural text-to-speech model. It focuses on making audiobook creation easy and fast: from a single command, the tool splits an e-book into chapters, synthesizes audio for each section, and then merges the results into a structured audiobook with chapter-based WAV files and a final .m4b container. The Kokoro-82M model it uses is compact (82M parameters) yet natural sounding, trained...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 21
    DSPy

    DSPy

    DSPy: The framework for programming—not prompting—language models

    Developed by the Stanford NLP Group, DSPy (Declarative Self-improving Python) is a framework that enables developers to program language models through compositional Python code rather than relying solely on prompt engineering. It facilitates the construction of modular AI systems and provides algorithms for optimizing prompts and weights, enhancing the quality and reliability of language model outputs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TurboDiffusion

    TurboDiffusion

    100–200× Acceleration for Video Diffusion Models

    ...The project targets large video models and enables developers to run accelerated generation even on single high-end GPUs, making fast video synthesis more practical for research and creative workflows. TurboDiffusion is structured to integrate with existing diffusion model architectures and provides tools for experimenting with and benchmarking speed and quality trade-offs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Engram

    Engram

    A New Axis of Sparsity for Large Language Models

    Engram is a high-performance embedding and similarity search library focused on making retrieval-augmented workflows efficient, scalable, and easy to adopt by developers building search, recommendation, or semantic matching systems. It provides utilities to generate embeddings from text or other structured data, index them using efficient approximate nearest neighbor algorithms, and perform real-time similarity queries even on large corpora. Engineered with speed and memory efficiency in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    UpTrain

    UpTrain

    Your open-source LLM evaluation toolkit

    Get scores for factual accuracy, context retrieval quality, guideline adherence, tonality, and many more. You can’t improve what you can’t measure. UpTrain continuously monitors your application's performance on multiple evaluation criterions and alerts you in case of any regressions with automatic root cause analysis. UpTrain enables fast and robust experimentation across multiple prompts, model providers, and custom configurations, by calculating quantitative scores for direct comparison and optimal prompt selection. Hallucinations have plagued LLMs since their inception. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    TensorFlow Model Garden

    TensorFlow Model Garden

    Models and examples built with TensorFlow

    The TensorFlow Model Garden is a repository with a number of different implementations of state-of-the-art (SOTA) models and modeling solutions for TensorFlow users. We aim to demonstrate the best practices for modeling so that TensorFlow users can take full advantage of TensorFlow for their research and product development. To improve the transparency and reproducibility of our models, training logs on TensorBoard.dev are also provided for models to the extent possible though not all models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next