• MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • 1
    GLM-OCR

    GLM-OCR

    Accurate × Fast × Comprehensive

    ...The model’s multimodal capabilities allow it to reason across image and text content holistically, capturing structured and unstructured information from pages that include dense tables, seals, code snippets, and varied document graphics. GLM-OCR integrates a comprehensive SDK and inference toolchain that makes it easy for developers to install, invoke, and embed into production pipelines with simple commands or APIs.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    Claude Code SDK Python

    Claude Code SDK Python

    Python SDK for Claude Agent

    ...The SDK includes core client classes, asynchronous query functions, and support for custom tools and hooks within Claude sessions. It is designed to integrate with local Python workflows and allow developers to embed Claude Code capabilities directly in their applications or scripts. The repo is MIT-licensed and includes documentation and installation instructions (requires Python 3.10+, Node installation of Claude Code). Example usage shows how to stream responses, parse structured message blocks, or create persistent client sessions.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    OpenBB

    OpenBB

    Investment Research for Everyone, Everywhere

    Customize and speed up your analysis, bring your own data, and create instant reports to gain a competitive edge. Whether it’s a CSV file, a private endpoint, an RSS feed, or even embed an SEC filing directly. Chat with financial data using large language models. Don’t waste time reading, create summaries in seconds and ask how that impacts investments. Create your dashboard with your favorite widgets. Create charts directly from raw data in seconds. Create charts directly from raw data in seconds. Customize your dashboards to build your dream terminal, integrate with your private datasets and bring your own fine-tuned AI copilots.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DocArray

    DocArray

    The data structure for multimodal data

    DocArray is a library for nested, unstructured, multimodal data in transit, including text, image, audio, video, 3D mesh, etc. It allows deep-learning engineers to efficiently process, embed, search, recommend, store, and transfer multimodal data with a Pythonic API. Door to multimodal world: super-expressive data structure for representing complicated/mixed/nested text, image, video, audio, 3D mesh data. The foundation data structure of Jina, CLIP-as-service, DALL·E Flow, DiscoArt etc. Data science powerhouse: greatly accelerate data scientists’ work on embedding, k-NN matching, querying, visualizing, evaluating via Torch/TensorFlow/ONNX/PaddlePaddle on CPU/GPU. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 5
    CLIP-as-service

    CLIP-as-service

    Embed images and sentences into fixed-length vectors

    CLIP-as-service is a low-latency high-scalability service for embedding images and text. It can be easily integrated as a microservice into neural search solutions. Serve CLIP models with TensorRT, ONNX runtime and PyTorch w/o JIT with 800QPS[*]. Non-blocking duplex streaming on requests and responses, designed for large data and long-running tasks. Horizontally scale up and down multiple CLIP models on single GPU, with automatic load balancing. Easy-to-use. No learning curve, minimalist...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    qqbot

    qqbot

    A conversation robot base on Tencent's SmartQQ

    qqbot is a QQ robot implemented in python and based on Tencent SmartQQ protocol, which can run on Linux, Windows and Mac OSX platforms. During the startup process, the QR code picture will pop up automatically. You need to scan the code with the mobile QQ client and authorize the login. After the startup is successful, the current login information will be saved to the local file. When the next startup, you can enter: qqbot -q qq number , first try to restore the login information from the...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Retrieval-Based Conversational Model

    Retrieval-Based Conversational Model

    Dual LSTM Encoder for Dialog Response Generation

    Retrieval-Based Conversational Model in Tensorflow is a project implementing a retrieval-based conversational model using a dual LSTM encoder architecture in TensorFlow, illustrating how neural networks can be trained to select appropriate responses from a fixed set of candidate replies rather than generate them from scratch. The core idea is to embed both the conversation context and potential replies into vector representations, then score how well each candidate fits the current dialogue, choosing the best match accordingly. Designed to work with datasets like the Ubuntu Dialogue Corpus, this codebase includes data preparation, model training, and evaluation components for building and assessing dialog models that can handle multi-turn conversations.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB