Showing 3 open source projects for "embed"

View related business solutions
  • Go from Data Warehouse to Data and AI platform with BigQuery Icon
    Go from Data Warehouse to Data and AI platform with BigQuery

    Build, train, and run ML models with simple SQL. Automate data prep, analysis, and predictions with built-in AI assistance from Gemini.

    BigQuery is more than a data warehouse—it's an autonomous data-to-AI platform. Use familiar SQL to train ML models, run time-series forecasts, and generate AI-powered insights with native Gemini integration. Built-in agents handle data engineering and data science workflows automatically. Get $300 in free credit, query 1 TB, and store 10 GB free monthly.
    Try BigQuery Free
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • 1
    GLM-OCR

    GLM-OCR

    Accurate × Fast × Comprehensive

    ...The model’s multimodal capabilities allow it to reason across image and text content holistically, capturing structured and unstructured information from pages that include dense tables, seals, code snippets, and varied document graphics. GLM-OCR integrates a comprehensive SDK and inference toolchain that makes it easy for developers to install, invoke, and embed into production pipelines with simple commands or APIs.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    Claude Code SDK Python

    Claude Code SDK Python

    Python SDK for Claude Agent

    ...The SDK includes core client classes, asynchronous query functions, and support for custom tools and hooks within Claude sessions. It is designed to integrate with local Python workflows and allow developers to embed Claude Code capabilities directly in their applications or scripts. The repo is MIT-licensed and includes documentation and installation instructions (requires Python 3.10+, Node installation of Claude Code). Example usage shows how to stream responses, parse structured message blocks, or create persistent client sessions.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Retrieval-Based Conversational Model

    Retrieval-Based Conversational Model

    Dual LSTM Encoder for Dialog Response Generation

    Retrieval-Based Conversational Model in Tensorflow is a project implementing a retrieval-based conversational model using a dual LSTM encoder architecture in TensorFlow, illustrating how neural networks can be trained to select appropriate responses from a fixed set of candidate replies rather than generate them from scratch. The core idea is to embed both the conversation context and potential replies into vector representations, then score how well each candidate fits the current dialogue, choosing the best match accordingly. Designed to work with datasets like the Ubuntu Dialogue Corpus, this codebase includes data preparation, model training, and evaluation components for building and assessing dialog models that can handle multi-turn conversations.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB