Showing 1874 open source projects for "artificial intelligence python"

View related business solutions
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • SIEM | API Security | Log Management Software Icon
    SIEM | API Security | Log Management Software

    AI-Powered Security and IT Operations Without Compromise.

    Built on the Graylog Platform, Graylog Security is the industry’s best-of-breed threat detection, investigation, and response (TDIR) solution. It simplifies analysts’ day-to-day cybersecurity activities with an unmatched workflow and user experience while simultaneously providing short- and long-term budget flexibility in the form of low total cost of ownership (TCO) that CISOs covet. With Graylog Security, security analysts can:
    Learn More
  • 1
    pyntcloud

    pyntcloud

    pyntcloud is a Python library for working with 3D point clouds

    This page will introduce the general concept of point clouds and illustrate the capabilities of pyntcloud as a point cloud processing tool. Point clouds are one of the most relevant entities for representing three dimensional data these days, along with polygonal meshes (which are just a special case of point clouds with connectivity graph attached). In its simplest form, a point cloud is a set of points in a cartesian coordinate system. Accurate 3D point clouds can nowadays be (easily and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    LaMDA-pytorch

    LaMDA-pytorch

    Open-source pre-training implementation of Google's LaMDA in PyTorch

    Open-source pre-training implementation of Google's LaMDA research paper in PyTorch. The totally not sentient AI. This repository will cover the 2B parameter implementation of the pre-training architecture as that is likely what most can afford to train. You can review Google's latest blog post from 2022 which details LaMDA here. You can also view their previous blog post from 2021 on the model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    min(DALL·E)

    min(DALL·E)

    min(DALL·E) is a fast, minimal port of DALL·E Mini to PyTorch

    This is a fast, minimal port of Boris Dayma's DALL·E Mini (with mega weights). It has been stripped down for inference and converted to PyTorch. The only third-party dependencies are numpy, requests, pillow and torch. The required models will be downloaded to models_root if they are not already there. Set the dtype to torch.float16 to save GPU memory. If you have an Ampere architecture GPU you can use torch.bfloat16. Set the device to either cuda or "cpu". Once everything has finished...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    ConvNeXt

    ConvNeXt

    Code release for ConvNeXt model

    ConvNeXt is a modernized convolutional neural network (CNN) architecture designed to rival Vision Transformers (ViTs) in accuracy and scalability while retaining the simplicity and efficiency of CNNs. It revisits classic ResNet-style backbones through the lens of transformer design trends—large kernel sizes, inverted bottlenecks, layer normalization, and GELU activations—to bridge the performance gap between convolutions and attention-based models. ConvNeXt’s clean, hierarchical structure...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • 5
    Video Pre-Training

    Video Pre-Training

    Learning to Act by Watching Unlabeled Online Videos

    The Video PreTraining (VPT) repository provides code and model artifacts for a project where agents learn to act by watching human gameplay videos—specifically, gameplay of Minecraft—using behavioral cloning. The idea is to learn general priors of control from large-scale, unlabeled video data, and then optionally fine-tune those priors for more goal-directed behavior via environment interaction. The repository contains demonstration models of different widths, fine-tuned variants (e.g. for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    StudioGAN

    StudioGAN

    StudioGAN is a Pytorch library providing implementations of networks

    StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation. StudioGAN aims to offer an identical playground for modern GANs so that machine learning researchers can readily compare and analyze a new idea. Moreover, StudioGAN provides an unprecedented-scale benchmark for generative models. The benchmark includes results from GANs (BigGAN-Deep, StyleGAN-XL), auto-regressive models (MaskGIT,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    DALL·E Mini

    DALL·E Mini

    Generate images from a text prompt

    DALL·E Mini, generate images from a text prompt. Craiyon/DALL·E mini is an attempt at reproducing those results with an open-source model. The model is trained by looking at millions of images from the internet with their associated captions. Over time, it learns how to draw an image from a text prompt. Some concepts are learned from memory as they may have seen similar images. However, it can also learn how to create unique images that don't exist, such as "the Eiffel tower is landing on...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 8
    Alphafold2

    Alphafold2

    Unofficial Pytorch implementation / replication of Alphafold2

    To eventually become an unofficial working Pytorch implementation of Alphafold2, the breathtaking attention network that solved CASP14. Will be gradually implemented as more details of the architecture is released. Once this is replicated, I intend to fold all available amino acid sequences out there in-silico and release it as an academic torrent, to further science. Deepmind has open sourced the official code in Jax, along with the weights! This repository will now be geared towards a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Disco Diffusion

    Disco Diffusion

    Notebooks, models and techniques for the generation of AI Art

    A frankensteinian amalgamation of notebooks, models, and techniques for the generation of AI art and animations. This project uses a special conversion tool to convert the Python files into notebooks for easier development. What this means is you do not have to touch the notebook directly to make changes to it. The tool being used is called Colab-Convert. Initial QoL improvements added, including user-friendly UI, settings+prompt saving, and improved google drive folder organization. Now...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Original Buy Center Software. Icon
    The Original Buy Center Software.

    Never Go To The Auction Again.

    VAN sources private-party vehicles from over 20 platforms and provides all necessary tools to communicate with sellers and manage opportunities. Franchise and Independent dealers can boost their buy center strategies with our advanced tools and an experienced Acquisition Coaching™ team dedicated to your success.
    Learn More
  • 10
    DomE

    DomE

    Implements a reference architecture for creating information systems

    ...Thus, an alternative to the traditional software production processes is proposed, which involves several stages and different actors, sometimes demanding a lot of time and money without obtaining the expected result. With software engineering techniques, self-adaptive systems, and artificial intelligence, it is possible, the integration between design time and execution time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    ruDALL-E

    ruDALL-E

    Generate images from texts. In Russian

    ...You can even combine different languages within a single query. This neural network has been developed and trained by Sber AI researchers in close collaboration with scientists from Artificial Intelligence Research Institute using joined datasets by Sber AI and SberDevices. Russian text-to-image model that generates images from text. The architecture is the same as ruDALL-E XL. Even more parameters in the new version.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Guided Diffusion

    Guided Diffusion

    Codebase for Diffusion Models Beat GANS on Image Synthesis

    The guided-diffusion repository is centered on diffusion models for image synthesis, with a focus on classifier guidance and improvements over earlier diffusion frameworks. It is derived from OpenAI’s improved-diffusion work, enhanced to include guided generation where a classifier (or other guidance mechanism) can steer sampling toward desired classes or attributes. The code provides model definitions (UNet, diffusion schedules), sampling and training scripts, and utilities for guidance and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    AI Atelier

    AI Atelier

    Based on the Disco Diffusion, version of the AI art creation software

    Based on the Disco Diffusion, we have developed a Chinese & English version of the AI art creation software "AI Atelier". We offer both Text-To-Image models (Disco Diffusion and VQGAN+CLIP) and Text-To-Text (GPT-J-6B and GPT-NEOX-20B) as options. Making available complete source code of licensed works and modifications, which include larger works using a licensed work, under the same license. Copyright and license notices must be preserved. When a modified version is used to provide a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    ASRT Speech Recognition

    ASRT Speech Recognition

    A Deep-Learning-Based Chinese Speech Recognition System

    ASRT is an end-to-end deep-learning Chinese ASR system built with TensorFlow/Keras, using convolution + CTC and a Max-Entropy HMM language model. It provides a REST/gRPC server backend and client SDKs in multiple languages (Python, Java, Go, Windows). Notably lightweight, it performs well without needing GPU acceleration and runs across platforms, targeting developers and researchers building Chinese voice interfaces.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    VoiceSmith

    VoiceSmith

    [WIP] VoiceSmith makes training text to speech models easy

    VoiceSmith makes it possible to train and infer on both single and multispeaker models without any coding experience. It fine-tunes a pretty solid text to speech pipeline based on a modified version of DelightfulTTS and UnivNet on your dataset. Both models were pretrained on a proprietary 5000 speaker dataset. It also provides some tools for dataset preprocessing like automatic text normalization. Windows (only CPU supported currently) or any Linux based operating system. If you want to run...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Fairseq

    Fairseq

    Facebook AI Research Sequence-to-Sequence Toolkit written in Python

    Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks. We provide reference implementations of various sequence modeling papers. Recent work by Microsoft and Google has shown that data parallel training can be made significantly more efficient by sharding the model parameters and optimizer state across data parallel workers. These ideas are encapsulated in the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    SageMaker MXNet Inference Toolkit is an open-source library for serving MXNet models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain MXNet model types and utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    DeeProtGO

    DeeProtGO

    DeeProtGO is a deep learning model for predicting GO terms of proteins

    This project contains the source code of DeeProtGO as well as an example of its use when predicting GO terms of the biological process sub-ontology for eukaryotic proteins.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    AI Wallpapers

    Change your wallpaper daily using images generated with DALL-E 2

    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    gplearn

    gplearn

    Genetic Programming in Python, with a scikit-learn inspired API

    gplearn implements Genetic Programming in Python, with a scikit-learn-inspired and compatible API. While Genetic Programming (GP) can be used to perform a very wide variety of tasks, gplearn is purposefully constrained to solving symbolic regression problems. This is motivated by the scikit-learn ethos, of having powerful estimators that are straightforward to implement. Symbolic regression is a machine learning technique that aims to identify an underlying mathematical expression that best...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Mask2Former

    Mask2Former

    Code release for "Masked-attention Mask Transformer

    Mask2Former is a unified segmentation architecture that handles semantic, instance, and panoptic segmentation with one model and one training recipe. Its core idea is to cast segmentation as mask classification: a transformer decoder predicts a set of mask queries, each with an associated class score, eliminating the need for task-specific heads. A pixel decoder fuses multi-scale features and feeds masked attention in the transformer so each query focuses computation on its current spatial...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    Catalyst is a PyTorch framework for accelerated Deep Learning research and development. It allows you to write compact but full-featured Deep Learning pipelines with just a few lines of code. With Catalyst you get a full set of features including a training loop with metrics, model checkpointing and more, all without the boilerplate. Catalyst is focused on reproducibility, rapid experimentation, and codebase reuse so you can break the cycle of writing another regular train loop and make...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Guild AI

    Guild AI

    Experiment tracking, ML developer tools

    Guild AI is an open-source experiment tracking toolkit designed to bring systematic control to machine learning workflows, enabling users to build better models faster. It automatically captures every detail of training runs as unique experiments, facilitating comprehensive tracking and analysis. Users can compare and analyze runs to deepen their understanding and incrementally improve models. Guild AI simplifies hyperparameter tuning by applying state-of-the-art algorithms through...
    Downloads: 0 This Week
    Last Update:
    See Project