Showing 861 open source projects for "machine learning python"

View related business solutions
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • Field Service+ for MS Dynamics 365 & Salesforce Icon
    Field Service+ for MS Dynamics 365 & Salesforce

    Empower your field service with mobility and reliability

    Resco’s mobile solution streamlines your field service operations with offline work, fast data sync, and powerful tools for frontline workers, all natively integrated into Dynamics 365 and Salesforce.
    Learn More
  • 1
    imbalanced-learn

    imbalanced-learn

    A Python Package to Tackle the Curse of Imbalanced Datasets in ML

    Imbalanced-learn (imported as imblearn) is an open source, MIT-licensed library relying on scikit-learn (imported as sklearn) and provides tools when dealing with classification with imbalanced classes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    Transformers provides APIs and tools to easily download and train state-of-the-art pre-trained models. Using pre-trained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities. Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages. Images, for tasks like image...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    FLAML

    FLAML

    A fast library for AutoML and tuning

    FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Advanced Solutions Lab

    Advanced Solutions Lab

    This repos contains notebooks for the Advanced Solutions Lab

    ...This is maintained by Google Cloud’s Advanced Solutions Lab (ASL) team. Vertex AI is the next-generation AI Platform on the Google Cloud Platform. The material covered in this repo will take a software engineer with no exposure to machine learning to an advanced level.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Repair-CRM Icon
    Repair-CRM

    For small companies that repair and maintenance customer machines

    All-In-One Solution with an Online Booking portal for automating scheduling & dispatching to ditch paperwork and improve the productivity of your technicians!
    Learn More
  • 5
    stable-diffusion-videos

    stable-diffusion-videos

    Create videos with Stable Diffusion

    Create videos with Stable Diffusion by exploring the latent space and morphing between text prompts. Try it yourself in Colab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Scanpy

    Scanpy

    Single-cell analysis in Python

    Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It includes preprocessing, visualization, clustering, trajectory inference and differential expression testing. The Python-based implementation efficiently deals with datasets of more than one million cells.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    tsai

    tsai

    Time series Timeseries Deep Learning Machine Learning Pytorch fastai

    tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series tasks like classification, regression, forecasting, and imputation. Starting with tsai 0.3.0 tsai will only install hard dependencies. Other soft dependencies (which are only required for selected tasks) will not be installed by default (this is the recommended approach. If you require any of the dependencies that is not installed, tsai will ask you to install...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    GPflow

    GPflow

    Gaussian processes in TensorFlow

    GPflow is a package for building Gaussian process models in Python. It implements modern Gaussian process inference for composable kernels and likelihoods. GPflow builds on TensorFlow 2.4+ and TensorFlow Probability for running computations, which allows fast execution on GPUs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    ...The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deep learning framework interface. The back-end is implemented by high-performance languages, such as CUDA, C++. Jittor'op is similar to NumPy. Let's try some operations. We create Var a and b via operation jt.float32, and add them.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cloud data warehouse to power your data-driven innovation Icon
    Cloud data warehouse to power your data-driven innovation

    BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data.

    BigQuery Studio provides a single, unified interface for all data practitioners of various coding skills to simplify analytics workflows from data ingestion and preparation to data exploration and visualization to ML model creation and use. It also allows you to use simple SQL to access Vertex AI foundational models directly inside BigQuery for text processing tasks, such as sentiment analysis, entity extraction, and many more without having to deal with specialized models.
    Try for free
  • 10
    PyTorch Geometric Temporal

    PyTorch Geometric Temporal

    Spatiotemporal Signal Processing with Neural Machine Learning Models

    The library consists of various dynamic and temporal geometric deep learning, embedding, and Spatio-temporal regression methods from a variety of published research papers. Moreover, it comes with an easy-to-use dataset loader, train-test splitter and temporal snaphot iterator for dynamic and temporal graphs. The framework naturally provides GPU support. It also comes with a number of benchmark datasets from the epidemiological forecasting, sharing economy, energy production and web traffic...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    OpenMLSys-ZH

    OpenMLSys-ZH

    Machine Learning Systems: Design and Implementation

    ...The repo mirrors the structure of the original OpenMLSys docs: sections on system design, API references, deployment instructions, module overviews, and example workflows. It helps bridge language barriers in open machine learning systems by providing side-by-side translation or localized explanations. The repository includes scripts or tooling to keep translation synchronized with upstream changes, versioning, and possibly translation metadata (contributors, timestamp). Users can browse or clone the translated documentation to follow along with the original content, deploy examples, or understand system internals in their preferred language.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    MLE-Agent

    MLE-Agent

    Intelligent companion for seamless AI engineering and research

    MLE-Agent is designed as a pairing LLM agent for machine learning engineers and researchers. A library designed for managing machine learning experiments, tracking metrics, and model deployment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Kubeflow pipelines

    Kubeflow pipelines

    Machine Learning Pipelines for Kubeflow

    Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable. A pipeline is a description of an ML workflow, including all of the components in the workflow and how they combine in the form of a graph. The pipeline includes the definition of the inputs (parameters) required to run the pipeline and the inputs and outputs of each component.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways to boost the performance of your model. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark tree models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    NErlNet

    NErlNet

    Nerlnet is a framework for research and development

    NErlNet is a research-grade framework for distributed machine learning over IoT and edge devices. Built with Erlang (Cowboy HTTP), OpenNN, and Python (Flask), it enables simulation of clusters on a single machine or real deployment across heterogeneous devices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    BackgroundMattingV2

    BackgroundMattingV2

    Real-Time High-Resolution Background Matting

    Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires capturing an additional background image and produces state-of-the-art matting results at 4K 30fps and HD 60fps on an Nvidia RTX 2080 TI GPU.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    snorkel

    snorkel

    A system for quickly generating training data with weak supervision

    ...Snorkel Flow, an end-to-end machine learning platform for developing and deploying AI applications. Snorkel Flow incorporates many of the concepts of the Snorkel project with a range of newer techniques around weak supervision modeling, data augmentation, multi-task learning, data slicing and structuring.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Substra

    Substra

    Low-level Python library used to interact with a Substra network

    An open-source framework supporting privacy-preserving, traceable federated learning and machine learning orchestration. Offers a Python SDK, high-level FL library (SubstraFL), and web UI to define datasets, models, tasks, and orchestrate secure, auditable collaborations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Paperless-ngx

    Paperless-ngx

    A community-supported supercharged version of paperless

    Paperless-ngx is a community-supported open-source document management system that transforms your physical documents into a searchable online archive so you can keep, well, less paper.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 23
    pmdarima

    pmdarima

    Statistical library designed to fill the void in Python's time series

    A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 24
    pycm

    pycm

    Multi-class confusion matrix library in Python

    PyCM is a multi-class confusion matrix library written in Python that supports both input data vectors and direct matrix, and a proper tool for post-classification model evaluation that supports most classes and overall statistics parameters. PyCM is the swiss-army knife of confusion matrices, targeted mainly at data scientists that need a broad array of metrics for predictive models and an accurate evaluation of large variety of classifiers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    DeepXDE

    DeepXDE

    A library for scientific machine learning & physics-informed learning

    DeepXDE is a library for scientific machine learning and physics-informed learning. DeepXDE includes the following algorithms. Physics-informed neural network (PINN). Solving different problems. Solving forward/inverse ordinary/partial differential equations (ODEs/PDEs) [SIAM Rev.] Solving forward/inverse integro-differential equations (IDEs) [SIAM Rev.] fPINN: solving forward/inverse fractional PDEs (fPDEs) [SIAM J.
    Downloads: 0 This Week
    Last Update:
    See Project