Showing 1749 open source projects for "windows for linux"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1
    Robyn

    Robyn

    Experimental, AI/ML-powered and open sourced Marketing Mix Modeling

    Robyn is an open-source, AI/ML-powered Marketing Mix Modeling (MMM) toolkit developed by Meta Marketing Science under the “facebookexperimental” GitHub umbrella. Its goal is to democratize rigorous MMM: what traditionally required expert statisticians and expensive consulting becomes accessible to any company with data. Robyn takes in historical data (spends on different marketing channels, conversions, or revenue, and optional context or organic-media variables) and uses a combination of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Sa2VA

    Sa2VA

    Official Repo For "Sa2VA: Marrying SAM2 with LLaVA

    Sa2VA is a cutting-edge open-source multi-modal large language model (MLLM) developed by ByteDance that unifies dense segmentation, visual understanding, and language-based reasoning across both images and videos. It merges the segmentation power of a state-of-the-art video segmentation model (based on SAM‑2) with the vision-language reasoning capabilities of a strong LLM backbone (derived from models like InternVL2.5 / Qwen-VL series), yielding a system that can answer questions about...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Trae Agent

    Trae Agent

    LLM-based agent for general purpose software engineering tasks

    Trae Agent is an open-source, LLM-based agent system also developed by ByteDance, focused primarily on automating software engineering workflows. It provides a command-line interface (CLI) that accepts natural-language instructions (e.g. “refactor this module,” “write a unit test,” “generate a REST API skeleton”), and then orchestrates tool-based workflows — such as file editing, shell/batch commands, code generation, code formatting or refactoring — to carry out complex engineering tasks....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Vidi2

    Vidi2

    Large Multimodal Models for Video Understanding and Editing

    Vidi is a family of large multimodal models developed for deep video understanding and editing tasks, integrating vision, audio, and language to allow sophisticated querying and manipulation of video content. It’s designed to process long-form, real-world videos and answer complex queries such as “when in this clip does X happen?” or “where in the frame is object Y during that moment?” — offering temporal retrieval, spatio-temporal grounding (i.e. locating objects over time + space), and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    VideoChat

    VideoChat

    Real-time voice interactive digital human

    VideoChat is a real-time voice-interactive “digital human” system that combines automatic speech recognition, large language models, text-to-speech, and talking-head generation into a single conversational pipeline. It supports both pure end-to-end voice solutions based on multimodal large language models (GLM-4-Voice feeding directly into talking-head generation) and a more traditional cascaded pipeline using ASR → LLM → TTS → talking head. It is built as a Gradio Python demo, exposing a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    files-to-prompt

    files-to-prompt

    Concatenate a directory full of files into a single prompt

    files-to-prompt is a Python command-line tool that takes one or more files or entire directories and concatenates their contents into a single, LLM-friendly prompt. It walks the directory tree, outputting each file preceded by its relative path and a separator, so a model can understand which content came from where. The tool is aimed at workflows where you want to ask an LLM questions about a whole codebase, documentation set, or notes folder without manually copying files together. It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    mlforecast

    mlforecast

    Scalable machine learning for time series forecasting

    mlforecast is a time-series forecasting framework built around machine-learning models, designed to make forecasting both efficient and scalable. It lets you apply any regressor that follows the typical scikit-learn API, for example, gradient-boosted trees or linear models, to time-series data by automating much of the messy feature engineering and data preparation. Instead of writing custom code to build lagged features, rolling statistics, and date-based predictors, mlforecast generates...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 10
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    AWS Neuron is a software development kit (SDK) for running machine learning inference using AWS Inferentia chips. It consists of a compiler, run-time, and profiling tools that enable developers to run high-performance and low latency inference using AWS Inferentia-based Amazon EC2 Inf1 instances. Using Neuron developers can easily train their machine learning models on any popular framework such as TensorFlow, PyTorch, and MXNet, and run it optimally on Amazon EC2 Inf1 instances. You can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    PaSa

    PaSa

    An advanced paper search agent powered by large language models

    PaSa is an open-source “paper search agent” built around large language models (LLMs), designed to automate the process of academic literature retrieval with human-like decision making. Instead of simply translating a query into keywords and returning a flat list of matching papers, PaSa uses a dual-agent architecture (Crawler + Selector) that can iteratively search, read, analyze, and filter academic publications — simulating how a researcher might dig through citation networks, expand...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    MiniMax-M1

    MiniMax-M1

    Open-weight, large-scale hybrid-attention reasoning model

    MiniMax-M1 is presented as the world’s first open-weight, large-scale hybrid-attention reasoning model, designed to push the frontier of long-context, tool-using, and deeply “thinking” language models. It is built on the MiniMax-Text-01 foundation and keeps the same massive parameter budget, but reworks the attention and training setup for better reasoning and test-time compute scaling. Architecturally, it combines Mixture-of-Experts layers with lightning attention, enabling the model to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    MiniMax-01

    MiniMax-01

    Large-language-model & vision-language-model based on Linear Attention

    MiniMax-01 is the official repository for two flagship models: MiniMax-Text-01, a long-context language model, and MiniMax-VL-01, a vision-language model built on top of it. MiniMax-Text-01 uses a hybrid attention architecture that blends Lightning Attention, standard softmax attention, and Mixture-of-Experts (MoE) routing to achieve both high throughput and long-context reasoning. It has 456 billion total parameters with 45.9 billion activated per token and is trained with advanced parallel...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Auto Synced & Translated Dubs

    Auto Synced & Translated Dubs

    Automatically translates the text of a video based on a subtitle file

    Auto-Synced-Translated-Dubs is a toolchain that automatically translates and re-dubs videos using AI voices while keeping the new speech aligned to the original timing via subtitle files. It assumes you have a human-made SRT (or similar) subtitle file; the script then uses translation services such as Google Cloud or DeepL to generate translated subtitle tracks in one or more target languages. Using the timestamps of each subtitle line, it computes the required duration of each spoken...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Qwen2.5-Omni

    Qwen2.5-Omni

    Capable of understanding text, audio, vision, video

    Qwen2.5-Omni is an end-to-end multimodal flagship model in the Qwen series by Alibaba Cloud, designed to process multiple modalities (text, images, audio, video) and generate responses both as text and natural speech in streaming real-time. It supports “Thinker-Talker” architecture, and introduces innovations for aligning modalities over time (for example synchronizing video/audio), robust speech generation, and low-VRAM/quantized versions to make usage more accessible. It holds...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch. They combine pseudo-3d convolutions (axial convolutions) and temporal attention and show much better temporal fusion. The pseudo-3d convolutions isn't a new concept. It has been explored before in other contexts, say for protein contact prediction as "dimensional hybrid residual networks". The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Swirl

    Swirl

    Swirl queries any number of data sources with APIs

    Swirl queries any number of data sources with APIs and uses spaCy and NLTK to re-rank the unified results without extracting and indexing anything! Includes zero-code configs for Apache Solr, ChatGPT, Elastic Search, OpenSearch, PostgreSQL, Google BigQuery, RequestsGet, Google PSE, NLResearch.com, Miro & more! SWIRL adapts and distributes queries to anything with a search API - search engines, databases, noSQL engines, cloud/SaaS services etc - and uses AI (Large Language Models) to re-rank...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    darts is a Python library for easy manipulation and forecasting of time series. It contains a variety of models, from classics such as ARIMA to deep neural networks. The models can all be used in the same way, using fit() and predict() functions, similar to scikit-learn. The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account. Darts supports both univariate and multivariate time series and models. The ML-based models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    FlowLens MCP

    FlowLens MCP

    Open-source MCP server that gives your coding agent

    FlowLens MCP Server is an open-source tool designed to give AI-powered coding agents (like Claude Code, Cursor, GitHub Copilot / Codex, and others) full, replayable browser context to dramatically improve debugging, bug reporting, and regression testing for web applications. It works together with a companion browser extension: when a user reproduces a bug or a complicated UI interaction, the extension captures a rich session log, including screen/video recording, network traffic, console...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Klavis AI

    Klavis AI

    MCP integration platforms for AI agents to use tools at any scale

    Klavis AI is a Y Combinator X25-backed open-source infrastructure platform that enables AI agents to reliably connect with external tools and services at scale through Model Context Protocol (MCP). Founded by ex-Google DeepMind and ex-Lyft engineers, Klavis provides 50+ production-ready MCP servers with enterprise OAuth support for GitHub, Slack, Gmail, Salesforce, Linear, Notion, and more. The flagship product Strata solves tool overload through progressive discovery, achieving +13% higher...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    DeepSpeed

    DeepSpeed

    Deep learning optimization library: makes distributed training easy

    DeepSpeed is an easy-to-use deep learning optimization software suite that enables unprecedented scale and speed for Deep Learning Training and Inference. With DeepSpeed you can: 1. Train/Inference dense or sparse models with billions or trillions of parameters 2. Achieve excellent system throughput and efficiently scale to thousands of GPUs 3. Train/Inference on resource constrained GPU systems 4. Achieve unprecedented low latency and high throughput for inference 5. Achieve extreme...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TensorHouse

    TensorHouse

    A collection of reference Jupyter notebooks and demo AI/ML application

    TensorHouse is a scalable reinforcement learning (RL) platform that focuses on high-throughput experience generation and distributed training. It is designed to efficiently train agents across multiple environments and compute resources. TensorHouse enables flexible experiment management, making it suitable for large-scale RL experiments in both research and applied settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Chinese-LLaMA-Alpaca 2

    Chinese-LLaMA-Alpaca 2

    Chinese LLaMA-2 & Alpaca-2 Large Model Phase II Project

    This project is developed based on the commercially available large model Llama-2 released by Meta. It is the second phase of the Chinese LLaMA&Alpaca large model project. The Chinese LLaMA-2 base model and the Alpaca-2 instruction fine-tuning large model are open-sourced. These models expand and optimize the Chinese vocabulary on the basis of the original Llama-2, use large-scale Chinese data for incremental pre-training, and further improve the basic semantics and command understanding of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    BIG-bench

    BIG-bench

    Beyond the Imitation Game collaborative benchmark for measuring

    BIG-bench (Beyond the Imitation Game Benchmark) is a large, collaborative benchmark suite designed to probe the capabilities and limitations of large language models across hundreds of diverse tasks. Rather than focusing on a single metric or domain, it aggregates many hand-authored tasks that test reasoning, commonsense, math, linguistics, ethics, and creativity. Tasks are intentionally heterogeneous: some are multiple-choice with exact scoring, others are free-form generation judged by...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Aviary

    Aviary

    Ray Aviary - evaluate multiple LLMs easily

    Aviary is an LLM serving solution that makes it easy to deploy and manage a variety of open source LLMs. Providing an extensive suite of pre-configured open source LLMs, with defaults that work out of the box. Supporting Transformer models hosted on Hugging Face Hub or present on local disk. Aviary has native support for autoscaling and multi-node deployments thanks to Ray and Ray Serve. Aviary can scale to zero and create new model replicas (each composed of multiple GPU workers) in...
    Downloads: 0 This Week
    Last Update:
    See Project