Showing 14 open source projects for "windows for linux"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    FL4Health

    FL4Health

    Library to facilitate federated learning research

    FL4Health is a Vector Institute toolkit for building modular, clinically-focused FL pipelines. Tailored for healthcare, it supports privacy-preserving FL, heterogeneous data settings, integrated reporting, and clear API design.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Pfl Research

    Pfl Research

    Simulation framework for accelerating research

    A fast, modular Python framework released by Apple for privacy-preserving federated learning (PFL) simulation. Integrates with TensorFlow, PyTorch, and classical ML, and offers high-speed distributed simulation (7–72× faster than alternatives).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Awesome-FL

    Awesome-FL

    Comprehensive and timely academic information on federated learning

    A “awesome” curated list of federated learning (FL) academic resources: research papers, tools, frameworks, datasets, tutorials, and workshops. A hub for FL knowledge maintained by the academic community.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    FLEXible

    FLEXible

    Federated Learning (FL) experiment simulation in Python

    FLEXible (Federated Learning Experiments) is a Python framework offering tools to simulate FL with deep learning. It includes built-in datasets (MNIST, CIFAR10, Shakespeare), supports TensorFlow/PyTorch, and has extensions for adversarial attacks, anomaly detection, and decision trees.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    Xfl

    Xfl

    An Efficient and Easy-to-use Federated Learning Framework

    XFL is a lightweight, high-performance federated learning framework supporting both horizontal and vertical FL. It integrates homomorphic encryption, DP, secure MPC, and optimizes network resilience. Compatible with major ML libraries and deployable via Docker or Conda.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Appfl

    Appfl

    Advanced Privacy-Preserving Federated Learning framework

    APPFL (Advanced Privacy-Preserving Federated Learning) is a Python framework enabling researchers to easily build and benchmark privacy-aware federated learning solutions. It supports flexible algorithm development, differential privacy, secure communications, and runs efficiently on HPC and multi-GPU setups.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Substra

    Substra

    Low-level Python library used to interact with a Substra network

    An open-source framework supporting privacy-preserving, traceable federated learning and machine learning orchestration. Offers a Python SDK, high-level FL library (SubstraFL), and web UI to define datasets, models, tasks, and orchestrate secure, auditable collaborations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    NErlNet

    NErlNet

    Nerlnet is a framework for research and development

    NErlNet is a research-grade framework for distributed machine learning over IoT and edge devices. Built with Erlang (Cowboy HTTP), OpenNN, and Python (Flask), it enables simulation of clusters on a single machine or real deployment across heterogeneous devices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    A unified approach to federated learning, analytics, and evaluation. Federate any workload, any ML framework, and any programming language. Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case. Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Financial reporting cloud-based software. Icon
    Financial reporting cloud-based software.

    For companies looking to automate their consolidation and financial statement function

    The software is cloud based and automates complexities around consolidating and reporting for groups with multiple year ends, currencies and ERP systems with a slice and dice approach to reporting. While retaining the structure, control and validation needed in a financial reporting tool, we’ve managed to keep things flexible.
    Learn More
  • 10
    FATE

    FATE

    An industrial grade federated learning framework

    FATE (Federated AI Technology Enabler) is the world's first industrial grade federated learning open source framework to enable enterprises and institutions to collaborate on data while protecting data security and privacy. It implements secure computation protocols based on homomorphic encryption and multi-party computation (MPC). Supporting various federated learning scenarios, FATE now provides a host of federated learning algorithms, including logistic regression, tree-based algorithms,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    NVIDIA Federated Learning Application Runtime Environment NVIDIA FLARE is a domain-agnostic, open-source, extensible SDK that allows researchers and data scientists to adapt existing ML/DL workflows(PyTorch, TensorFlow, Scikit-learn, XGBoost etc.) to a federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration. NVIDIA FLARE is built on a componentized architecture that allows you to take federated...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    FEDML Open Source

    FEDML Open Source

    The unified and scalable ML library for large-scale training

    A Unified and Scalable Machine Learning Library for Running Training and Deployment Anywhere at Any Scale. TensorOpera AI is the next-gen cloud service for LLMs & Generative AI. It helps developers to launch complex model training, deployment, and federated learning anywhere on decentralized GPUs, multi-clouds, edge servers, and smartphones, easily, economically, and securely. Highly integrated with TensorOpera open source library, TensorOpera AI provides holistic support of three...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    FedLab

    FedLab

    A flexible Federated Learning Framework based on PyTorch

    A Python-based framework for federated learning simulation, emphasizing modularity, communication efficiency, and algorithmic flexibility. Supports both server- and client-side customization for research and development purposes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Fedhf

    Fedhf

    A Flexible Federated Learning Simulator

    FedHF is a Python-based simulator for flexible, heterogeneous, and asynchronous federated learning research. It provides configurable resource models, supports asynchronous protocols, and accelerates experimentation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next