Showing 123 open source projects for "running cppcheck on linux"

View related business solutions
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • 1
    IVY

    IVY

    The Unified Machine Learning Framework

    Take any code that you'd like to include. For example, an existing TensorFlow model, and some useful functions from both PyTorch and NumPy libraries. Choose any framework for writing your higher-level pipeline, including data loading, distributed training, analytics, logging, visualization etc. Choose any backend framework which should be used under the hood, for running this entire pipeline. Choose the most appropriate device or combination of devices for your needs. DeepMind releases an...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    AWS Neuron is a software development kit (SDK) for running machine learning inference using AWS Inferentia chips. It consists of a compiler, run-time, and profiling tools that enable developers to run high-performance and low latency inference using AWS Inferentia-based Amazon EC2 Inf1 instances. Using Neuron developers can easily train their machine learning models on any popular framework such as TensorFlow, PyTorch, and MXNet, and run it optimally on Amazon EC2 Inf1 instances. You can...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Kimi Code CLI

    Kimi Code CLI

    Kimi Code CLI is your next CLI agent

    Kimi CLI is a command-line AI agent that brings an intelligent software development assistant directly into your terminal, helping you with coding tasks, shell operations, and workflow automation without leaving your command prompt. It supports an interactive shell-like user interface where you can chat with the agent, request code edits, run shell commands, and receive contextual suggestions as you work, creating a seamless blend of AI-augmented development and traditional terminal usage....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    IMS Toucan

    IMS Toucan

    Controllable and fast Text-to-Speech for over 7000 languages

    IMS-Toucan is a toolkit for training, using, and teaching state-of-the-art text-to-speech systems, built at the Institute for Natural Language Processing (IMS), University of Stuttgart. It is the official home of ToucanTTS, a massively multilingual TTS system designed to support over 7,000 languages with a single unified framework. The toolkit focuses on being fast and controllable while not requiring huge amounts of compute, making it practical for research labs and smaller teams. It...
    Downloads: 1 This Week
    Last Update:
    See Project
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 5
    llama2.c

    llama2.c

    Inference Llama 2 in one file of pure C

    llama2.c is a minimalist implementation of the Llama 2 language model architecture designed to run entirely in pure C. Created by Andrej Karpathy, this project offers an educational and lightweight framework for performing inference on small Llama 2 models without external dependencies. It provides a full training and inference pipeline: models can be trained in PyTorch and later executed using a concise 700-line C program (run.c). While it can technically load Meta’s official Llama 2...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    fast-stable-diffusion

    fast-stable-diffusion

    Fast-stable-diffusion + DreamBooth

    fast-stable-diffusion is a community-curated GitHub repository that provides Colab notebooks and integration examples for running Stable Diffusion and associated UIs like AUTOMATIC1111, ComfyUI, and DreamBooth directly on Google Colab environments. Rather than being a standalone packaged application, this project offers ready-to-use interactive notebooks that install and launch full-feature Stable Diffusion web UIs inside Colab without requiring complex local setups or GPU installations....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    AutoCoder

    AutoCoder

    A long-running autonomous coding agent powered by the Claude Agent

    Autocoder is an experimental auto-generation engine that transforms high-level prompts or structured descriptions into functioning source code, models, or systems with minimal manual intervention. Rather than hand-writing boilerplate or repetitive patterns, users supply a specification—such as a description of a feature, a function prototype, or a module outline—and Autocoder fills in complete implementations that compile and run. It is built to support iterative refinement: after generating...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    RamaLama

    RamaLama

    Simplifies the local serving of AI models from any source

    RamaLama is an open-source developer tool that simplifies working with and serving AI models locally or in production by leveraging container technologies like Docker, Podman, and OCI registries, allowing AI inference workflows to be treated like standard container deployments. It abstracts away much of the complexity of configuring AI runtimes, dependencies, and hardware optimizations by detecting available GPUs (or falling back to CPU) and automatically pulling a container image...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    mcpo

    mcpo

    A simple, secure MCP-to-OpenAPI proxy server

    mcpo is a minimal bridge that exposes any MCP tool as an OpenAPI-compatible HTTP server. Instead of writing glue code, you point mcpo at an MCP server command and it generates REST endpoints and an OpenAPI spec that other systems (or LLM agent frameworks) can call immediately. This design lets you reuse a growing library of MCP servers with platforms that only understand HTTP+OpenAPI, unifying tool access across ecosystems. The project emphasizes “dead-simple” setup and pairs with Open WebUI...
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 10
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    H2O LLM Studio

    H2O LLM Studio

    Framework and no-code GUI for fine-tuning LLMs

    Welcome to H2O LLM Studio, a framework and no-code GUI designed for fine-tuning state-of-the-art large language models (LLMs). You can also use H2O LLM Studio with the command line interface (CLI) and specify the configuration file that contains all the experiment parameters. To finetune using H2O LLM Studio with CLI, activate the pipenv environment by running make shell. With H2O LLM Studio, training your large language model is easy and intuitive. First, upload your dataset and then start...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Autodistill

    Autodistill

    Images to inference with no labeling

    Autodistill uses big, slower foundation models to train small, faster supervised models. Using autodistill, you can go from unlabeled images to inference on a custom model running at the edge with no human intervention in between. You can use Autodistill on your own hardware, or use the Roboflow hosted version of Autodistill to label images in the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Meta-World

    Meta-World

    Collections of robotics environments

    ...The environments adhere to the Gymnasium API, which makes them easy to plug into existing RL pipelines, and they support both synchronous and asynchronous vectorized execution for running many environments in parallel. Installation is done via pip, with official support for Python versions 3.8 through 3.11 on Linux and macOS, and the project is licensed under MIT to encourage broad academic and industry use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Sygil WebUI

    Sygil WebUI

    Stable Diffusion web UI

    Sygil WebUI is a browser-based interface for running Stable Diffusion image generation locally or on a server, wrapping common text-to-image and image-to-image workflows into a practical UI. It provides multiple UI modes (including a legacy Gradio interface) and focuses on making iterative prompting, parameter tuning, and post-processing accessible without writing code. The UI exposes core generation controls like resolution, CFG guidance, sampling steps, samplers, seeds, and batch...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Self-hosted AI Package

    Self-hosted AI Package

    Run all your local AI together in one package

    Self-hosted AI Package is an open-source Docker Compose-based starter kit that makes it easy to bootstrap a full local AI and low-code development environment with commonly used open tools, empowering developers to run LLMs and AI workflows entirely on their infrastructure. The stack typically includes Ollama for running local large language models, n8n as a low-code workflow automation platform, Supabase for database and vector storage, Open WebUI for interacting with models, Flowise for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Granite TSFM

    Granite TSFM

    Foundation Models for Time Series

    granite-tsfm collects public notebooks, utilities, and serving components for IBM’s Time Series Foundation Models (TSFM), giving practitioners a practical path from data prep to inference for forecasting and anomaly-detection use cases. The repository focuses on end-to-end workflows: loading data, building datasets, fine-tuning forecasters, running evaluations, and serving models. It documents the currently supported Python versions and points users to where the core TSFM models are hosted...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    AutoAgent

    AutoAgent

    AutoAgent: Fully-Automated and Zero-Code LLM Agent Framework

    AutoAgent is a fully automated, zero-code LLM agent framework that lets users create agents and workflows using natural language instead of manual coding and configuration. It is structured around modes that cover both “use” and “build” scenarios: a user mode for running a ready-made multi-agent research assistant, plus editors for creating individual agents or multi-agent workflows from conversational requirements. The framework emphasizes self-managing workflow generation, where it can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    InfiAgent

    InfiAgent

    Build your own Cowork, AI Scientist and other SoTA Agents

    infiAgent is an open-source AI agent framework for building powerful, long-running autonomous agents capable of tackling complex tasks without collapsing under growing context or tool invocation histories. Designed as a “Multi-Level Agent” (MLA) system, it externalizes persistent state to the file system so that agents can operate over unlimited runtime without the need for token-intensive context compression, enabling workflows such as research paper drafting, experiments, coding, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Matcha-TTS

    Matcha-TTS

    A fast TTS architecture with conditional flow matching

    Matcha-TTS is a non-autoregressive neural text-to-speech architecture that uses conditional flow matching to generate speech quickly while maintaining natural quality. It models speech as an ODE-based generative process, and conditional flow matching lets it reach high-quality audio in only a few synthesis steps, which greatly reduces latency compared to score-matching diffusion approaches. The model is fully probabilistic, so it can generate diverse realizations of the same text while still...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    OSS-Fuzz Gen

    OSS-Fuzz Gen

    LLM powered fuzzing via OSS-Fuzz

    OSS-Fuzz-Gen is a companion project that helps automatically create or improve fuzz targets for open-source codebases, aiming to increase coverage in OSS-Fuzz with minimal maintainer effort. It analyses a library’s APIs, examples, and tests to propose harnesses that exercise parsers, decoders, or protocol handlers—precisely the code where fuzzing pays off. The system integrates with modern LLM-assisted workflows to draft harness code and then iterates based on build errors or low coverage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Google DeepMind GraphCast and GenCast

    Google DeepMind GraphCast and GenCast

    Global weather forecasting model using graph neural networks and JAX

    GraphCast, developed by Google DeepMind, is a research-grade weather forecasting framework that employs graph neural networks (GNNs) to generate medium-range global weather predictions. The repository provides complete example code for running and training both GraphCast and GenCast, two models introduced in DeepMind’s research papers. GraphCast is designed to perform high-resolution atmospheric simulations using the ERA5 dataset from ECMWF, while GenCast extends the approach with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    OuteTTS

    OuteTTS

    Interface for OuteTTS models

    OuteTTS is an interface library for running OuteTTS text-to-speech models across a range of backends, making it easier to deploy the same model on different hardware and runtimes. It provides a high-level Interface API that wraps model configuration, speaker handling, and audio generation so you can focus on integrating speech into your application rather than wiring up low-level engines. The project supports multiple backends including llama.cpp (Python bindings and server), Hugging Face...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Agent Payments Protocol (AP2)

    Agent Payments Protocol (AP2)

    Building a Secure and Interoperable Future for AI-Driven Payments

    AP2 is a project released by Google’s “Agentic Commerce” initiative, focusing on a protocol and reference implementation for agent-driven or AI-mediated payments. In effect, AP2 aims to define a secure, interoperable protocol that allows software agents to act on behalf of users—making payments or shopping decisions autonomously—while preserving necessary security, auditability, and trust. The repository contains sample scenarios (in Python, Android, etc.) that illustrate how agents,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Swirl

    Swirl

    Swirl queries any number of data sources with APIs

    Swirl queries any number of data sources with APIs and uses spaCy and NLTK to re-rank the unified results without extracting and indexing anything! Includes zero-code configs for Apache Solr, ChatGPT, Elastic Search, OpenSearch, PostgreSQL, Google BigQuery, RequestsGet, Google PSE, NLResearch.com, Miro & more! SWIRL adapts and distributes queries to anything with a search API - search engines, databases, noSQL engines, cloud/SaaS services etc - and uses AI (Large Language Models) to re-rank...
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB