Showing 20 open source projects for "running cppcheck on linux"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • 1
    SAM 3D Body

    SAM 3D Body

    Code for running inference with the SAM 3D Body Model 3DB

    SAM 3D Body is a promptable model for single-image full-body 3D human mesh recovery, designed to estimate detailed human pose and shape from just one RGB image. It reconstructs the full body, including feet and hands, using the Momentum Human Rig (MHR), a parametric mesh representation that decouples skeletal structure from surface shape for more accurate and interpretable results. The model is trained to be robust in diverse, in-the-wild conditions, so it handles varied clothing,...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 2
    AlphaFold 3

    AlphaFold 3

    AlphaFold 3 inference pipeline

    AlphaFold 3, developed by Google DeepMind, is an advanced deep learning system for predicting biomolecular structures and interactions with exceptional accuracy. This repository provides the complete inference pipeline for running AlphaFold 3, though access to the model parameters is restricted and must be obtained directly from Google under specific terms of use. The system is designed for scientific research applications in structural biology, biochemistry, and bioinformatics, enabling...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    FLUX.1

    FLUX.1

    Official inference repo for FLUX.1 models

    FLUX.1 repository contains inference code and tooling for the FLUX.1 text-to-image diffusion models, enabling developers and researchers to generate and edit images from natural-language prompts using open-weight versions of the model on their own hardware or within custom applications. The project is part of a larger family of FLUX models developed by Black Forest Labs, designed to produce high-quality, detailed visuals from text descriptions with competitive prompt adherence and artistic...
    Downloads: 13 This Week
    Last Update:
    See Project
  • 4
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    SAM 3 (Segment Anything Model 3) is a unified foundation model for promptable segmentation in both images and videos, capable of detecting, segmenting, and tracking objects. It accepts both text prompts (open-vocabulary concepts like “red car” or “goalkeeper in white”) and visual prompts (points, boxes, masks) and returns high-quality masks, boxes, and scores for the requested concepts. Compared with SAM 2, SAM 3 introduces the ability to exhaustively segment all instances of an...
    Downloads: 82 This Week
    Last Update:
    See Project
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • 5
    BitNet

    BitNet

    Inference framework for 1-bit LLMs

    BitNet (bitnet.cpp) is a high-performance inference framework designed to optimize the execution of 1-bit large language models, making them more efficient for edge devices and local deployment. The framework offers significant speedups and energy reductions, achieving up to 6.17x faster performance on x86 CPUs and 70% energy savings, allowing the running of models such as the BitNet b1.58 100B with impressive efficiency. With support for lossless inference and enhanced processing power,...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    Oasis

    Oasis

    Inference script for Oasis 500M

    Open-Oasis provides inference code and released weights for Oasis 500M, an interactive world model that generates gameplay frames conditioned on user keyboard input. Instead of rendering a pre-built game world, the system produces the next visual state via a diffusion-transformer approach, effectively “imagining” the world response to your actions in real time. The project focuses on enabling action-conditional frame generation so developers can experiment with interactive, model-generated...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Stable Diffusion Version 2

    Stable Diffusion Version 2

    High-Resolution Image Synthesis with Latent Diffusion Models

    Stable Diffusion (the stablediffusion repo by Stability-AI) is an open-source implementation and reference codebase for high-resolution latent diffusion image models that power many text-to-image systems. The repository provides code for training and running Stable Diffusion-style models, instructions for installing dependencies (with notes about performance libraries like xformers), and guidance on hardware/driver requirements for efficient GPU inference and training. It’s organized as a...
    Downloads: 14 This Week
    Last Update:
    See Project
  • 8
    Transformer Debugger

    Transformer Debugger

    Tool for exploring and debugging transformer model behaviors

    Transformer Debugger (TDB) is a research tool developed by OpenAI’s Superalignment team to investigate and interpret the behaviors of small language models. It combines automated interpretability methods with sparse autoencoders, enabling researchers to analyze how specific neurons, attention heads, and latent features contribute to a model’s outputs. TDB allows users to intervene directly in the forward pass of a model and observe how such interventions change predictions, making it...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Stable Diffusion WebUI Docker

    Stable Diffusion WebUI Docker

    Easy Docker setup for Stable Diffusion with user-friendly UI

    Stable Diffusion WebUI Docker is a Docker-based repository that simplifies running Stable Diffusion with rich user interfaces by packaging multiple popular web UIs into an easy-to-deploy containerized solution. It integrates leading community UIs like AUTOMATIC1111 and ComfyUI into a Docker Compose setup that can be started with a single command, abstracting away dependency installation and environment configuration. Users can choose which UI profile they want to run — for example, full...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Go from Data Warehouse to Data and AI platform with BigQuery Icon
    Go from Data Warehouse to Data and AI platform with BigQuery

    Build, train, and run ML models with simple SQL. Automate data prep, analysis, and predictions with built-in AI assistance from Gemini.

    BigQuery is more than a data warehouse—it's an autonomous data-to-AI platform. Use familiar SQL to train ML models, run time-series forecasts, and generate AI-powered insights with native Gemini integration. Built-in agents handle data engineering and data science workflows automatically. Get $300 in free credit, query 1 TB, and store 10 GB free monthly.
    Try BigQuery Free
  • 10
    Gemma in PyTorch

    Gemma in PyTorch

    The official PyTorch implementation of Google's Gemma models

    gemma_pytorch provides the official PyTorch reference for running and fine-tuning Google’s Gemma family of open models. It includes model definitions, configuration files, and loading utilities for multiple parameter scales, enabling quick evaluation and downstream adaptation. The repository demonstrates text generation pipelines, tokenizer setup, quantization paths, and adapters for low-rank or parameter-efficient fine-tuning. Example notebooks walk through instruction tuning and evaluation...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    MiniCPM-o

    MiniCPM-o

    A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming

    MiniCPM-o 2.6 is a cutting-edge multimodal large language model (MLLM) designed for high-performance tasks across vision, speech, and video. Capable of running on end-side devices such as smartphones and tablets, it provides powerful features like real-time speech conversation, video understanding, and multimodal live streaming. With 8 billion parameters, MiniCPM-o 2.6 surpasses its predecessors in versatility and efficiency, making it one of the most robust models available. It supports...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    BioEmu

    BioEmu

    Inference code for scalable emulation of protein equilibrium ensembles

    Biomolecular Emulator (BioEmu for short) is a model that samples from the approximated equilibrium distribution of structures for a protein monomer, given its amino acid sequence. By default, unphysical structures (steric clashes or chain discontinuities) will be filtered out, so you will typically get fewer samples in the output than requested. The difference can be very large if your protein has large disordered regions, which are very likely to produce clashes. BioEmu outputs structures...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    fast-stable-diffusion

    fast-stable-diffusion

    Fast-stable-diffusion + DreamBooth

    fast-stable-diffusion is a community-curated GitHub repository that provides Colab notebooks and integration examples for running Stable Diffusion and associated UIs like AUTOMATIC1111, ComfyUI, and DreamBooth directly on Google Colab environments. Rather than being a standalone packaged application, this project offers ready-to-use interactive notebooks that install and launch full-feature Stable Diffusion web UIs inside Colab without requiring complex local setups or GPU installations....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Granite TSFM

    Granite TSFM

    Foundation Models for Time Series

    granite-tsfm collects public notebooks, utilities, and serving components for IBM’s Time Series Foundation Models (TSFM), giving practitioners a practical path from data prep to inference for forecasting and anomaly-detection use cases. The repository focuses on end-to-end workflows: loading data, building datasets, fine-tuning forecasters, running evaluations, and serving models. It documents the currently supported Python versions and points users to where the core TSFM models are hosted...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Google DeepMind GraphCast and GenCast

    Google DeepMind GraphCast and GenCast

    Global weather forecasting model using graph neural networks and JAX

    GraphCast, developed by Google DeepMind, is a research-grade weather forecasting framework that employs graph neural networks (GNNs) to generate medium-range global weather predictions. The repository provides complete example code for running and training both GraphCast and GenCast, two models introduced in DeepMind’s research papers. GraphCast is designed to perform high-resolution atmospheric simulations using the ERA5 dataset from ECMWF, while GenCast extends the approach with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Grok-1

    Grok-1

    Open-source, high-performance Mixture-of-Experts large language model

    Grok-1 is a 314-billion-parameter Mixture-of-Experts (MoE) large language model developed by xAI. Designed to optimize computational efficiency, it activates only 25% of its weights for each input token. In March 2024, xAI released Grok-1's model weights and architecture under the Apache 2.0 license, making them openly accessible to developers. The accompanying GitHub repository provides JAX example code for loading and running the model. Due to its substantial size, utilizing Grok-1...
    Downloads: 24 This Week
    Last Update:
    See Project
  • 18
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Denoiser

    Denoiser

    Real Time Speech Enhancement in the Waveform Domain (Interspeech 2020)

    Denoiser is a real-time speech enhancement model operating directly on raw waveforms, designed to clean noisy audio while running efficiently on CPU. It uses a causal encoder-decoder architecture with skip connections, optimized with losses defined both in the time domain and frequency domain to better suppress noise while preserving speech. Unlike models that operate on spectrograms alone, this design enables lower latency and coherent waveform output. The implementation includes data...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    InfoGAN

    InfoGAN

    Code for reproducing key results in the paper

    The InfoGAN repository contains the original implementation used to reproduce the results in the paper “InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets”. InfoGAN is a variant of the GAN (Generative Adversarial Network) architecture that aims to learn disentangled and interpretable latent representations by maximizing the mutual information between a subset of the latent codes and the generated outputs. That extra incentive encourages the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB