Showing 212 open source projects for "neural python"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Collect! is a highly configurable debt collection software Icon
    Collect! is a highly configurable debt collection software

    Everything that matters to debt collection, all in one solution.

    The flexible & scalable debt collection software built to automate your workflow. From startup to enterprise, we have the solution for you.
    Learn More
  • 1
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    SparseML

    SparseML

    Libraries for applying sparsification recipes to neural networks

    SparseML is an optimization toolkit for training and deploying deep learning models using sparsification techniques like pruning and quantization to improve efficiency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    txtai

    txtai

    Build AI-powered semantic search applications

    txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications. Traditional search systems use keywords to find data. Semantic search applications have an understanding of natural language and identify results that have the same meaning, not necessarily the same keywords. Backed by state-of-the-art machine learning models, data is transformed into vector representations for search (also known as embeddings). Innovation is happening at a rapid...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    DocArray

    DocArray

    The data structure for multimodal data

    DocArray is a library for nested, unstructured, multimodal data in transit, including text, image, audio, video, 3D mesh, etc. It allows deep-learning engineers to efficiently process, embed, search, recommend, store, and transfer multimodal data with a Pythonic API. Door to multimodal world: super-expressive data structure for representing complicated/mixed/nested text, image, video, audio, 3D mesh data. The foundation data structure of Jina, CLIP-as-service, DALL·E Flow, DiscoArt etc. Data...
    Downloads: 1 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Learn More
  • 5
    Foolbox

    Foolbox

    Python toolbox to create adversarial examples

    ...Foolbox provides a large collection of state-of-the-art gradient-based and decision-based adversarial attacks. Catch bugs before running your code thanks to extensive type annotations in Foolbox. Foolbox is a Python library that lets you easily run adversarial attacks against machine learning models like deep neural networks. It is built on top of EagerPy and works natively with models in PyTorch, TensorFlow, and JAX.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    AUTOMATIC1111 Stable Diffusion web UI
    AUTOMATIC1111's stable-diffusion-webui is a powerful, user-friendly web interface built on the Gradio library that allows users to easily interact with Stable Diffusion models for AI-powered image generation. Supporting both text-to-image (txt2img) and image-to-image (img2img) generation, this open-source UI offers a rich feature set including inpainting, outpainting, attention control, and multiple advanced upscaling options. With a flexible installation process across Windows, Linux, and...
    Downloads: 86 This Week
    Last Update:
    See Project
  • 7
    PaddleNLP

    PaddleNLP

    Easy-to-use and powerful NLP library with Awesome model zoo

    PaddleNLP It is a natural language processing development library for flying paddles, with Easy-to-use text area API, Examples of applications for multiple scenarios, and High-performance distributed training Three major features, aimed at improving the modeling efficiency of the flying oar developer's text field, aiming to improve the developer's development efficiency in the text field, and provide rich examples of NLP applications. Provide rich industry-level pre-task capabilities...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Haystack

    Haystack

    Haystack is an open source NLP framework to interact with your data

    Apply the latest NLP technology to your own data with the use of Haystack's pipeline architecture. Implement production-ready semantic search, question answering, summarization and document ranking for a wide range of NLP applications. Evaluate components and fine-tune models. Ask questions in natural language and find granular answers in your documents using the latest QA models with the help of Haystack pipelines. Perform semantic search and retrieve ranked documents according to meaning,...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    DeepLabCut

    DeepLabCut

    Implementation of DeepLabCut

    ...This package is collaboratively developed by the Mathis Group & Mathis Lab at EPFL (releases prior to 2.1.9 were developed at Harvard University). The code is freely available and easy to install in a few clicks with Anaconda (and pypi). DeepLabCut is an open-source Python package for animal pose estimation.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Turn traffic into pipeline and prospects into customers Icon
    Turn traffic into pipeline and prospects into customers

    For account executives and sales engineers looking for a solution to manage their insights and sales data

    Docket is an AI-powered sales enablement platform designed to unify go-to-market (GTM) data through its proprietary Sales Knowledge Lake™ and activate it with intelligent AI agents. The platform helps marketing teams increase pipeline generation by 15% by engaging website visitors in human-like conversations and qualifying leads. For sales teams, Docket improves seller efficiency by 33% by providing instant product knowledge, retrieving collateral, and creating personalized documents. Built for GTM teams, Docket integrates with over 100 tools across the revenue tech stack and offers enterprise-grade security with SOC 2 Type II, GDPR, and ISO 27001 compliance. Customers report improved win rates, shorter sales cycles, and dramatically reduced response times. Docket’s scalable, accurate, and fast AI agents deliver reliable answers with confidence scores, empowering teams to close deals faster.
    Learn More
  • 10
    Neural Network Intelligence

    Neural Network Intelligence

    AutoML toolkit for automate machine learning lifecycle

    Neural Network Intelligence is an open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning. NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate feature engineering, neural architecture search, hyperparameter tuning and model compression. The tool manages automated machine learning (AutoML) experiments, dispatches and runs experiments'...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Zeta

    Zeta

    Build high-performance AI models with modular building blocks

    zeta is a deep learning library focused on providing cutting-edge AI and neural network models with a strong emphasis on research-grade architectures. It includes state-of-the-art implementations for rapid experimentation and model building.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    higgsfield

    higgsfield

    Fault-tolerant, highly scalable GPU orchestration

    Higgsfield is an open-source, fault-tolerant, highly scalable GPU orchestration, and a machine learning framework designed for training models with billions to trillions of parameters, such as Large Language Models (LLMs).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    Jina is a framework that empowers anyone to build cross-modal and multi-modal applications on the cloud. It uplifts a PoC into a production-ready service. Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray. Polyglot gateway that supports gRPC, Websockets, HTTP,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Kaleidoscope-SDK

    Kaleidoscope-SDK

    User toolkit for analyzing and interfacing with Large Language Models

    kaleidoscope-sdk is a Python module used to interact with large language models hosted via the Kaleidoscope service available at: https://github.com/VectorInstitute/kaleidoscope. It provides a simple interface to launch LLMs on an HPC cluster, asking them to perform basic features like text generation, but also retrieve intermediate information from inside the model, such as log probabilities and activations. Users must authenticate using their Vector Institute cluster credentials. This can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    EvoTorch

    EvoTorch

    Advanced evolutionary computation library built on top of PyTorch

    EvoTorch is an evolutionary optimization framework built on top of PyTorch, developed by NNAISENSE. It is designed for large-scale optimization problems, particularly those that require evolutionary algorithms rather than gradient-based methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    ...The purpose is pedagogical: you’ll see linear regression, logistic regression, k-means clustering, neural nets, decision trees, etc., built in Python using fundamentals like NumPy and Matplotlib, not hidden behind API calls. It is well suited for learners who want to move beyond library usage to understand how algorithms operate internally—how cost functions, gradients, updates and predictions work.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    AtomAI

    AtomAI

    Deep and Machine Learning for Microscopy

    AtomAI is a Pytorch-based package for deep and machine-learning analysis of microscopy data that doesn't require any advanced knowledge of Python or machine learning. The intended audience is domain scientists with a basic understanding of how to use NumPy and Matplotlib. It was developed by Maxim Ziatdinov at Oak Ridge National Lab. The purpose of the AtomAI is to provide an environment that bridges the instrument-specific libraries and general physical analysis by enabling the seamless deployment of machine learning algorithms including deep convolutional neural networks, invariant variational autoencoders, and decomposition/unmixing techniques for image and hyperspectral data analysis. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    Towhee is an open-source machine-learning pipeline that helps you encode your unstructured data into embeddings. You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    fastai

    fastai

    Deep learning library

    fastai is a deep learning library which provides practitioners with high-level components that can quickly and easily provide state-of-the-art results in standard deep learning domains, and provides researchers with low-level components that can be mixed and matched to build new approaches. It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Optax

    Optax

    Optax is a gradient processing and optimization library for JAX

    Optax is a gradient processing and optimization library for JAX. It is designed to facilitate research by providing building blocks that can be recombined in custom ways in order to optimize parametric models such as, but not limited to, deep neural networks. We favor focusing on small composable building blocks that can be effectively combined into custom solutions. Others may build upon these basic components in more complicated abstractions. Whenever reasonable, implementations prioritize...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. We have outsourced a lot of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    FLAML

    FLAML

    A fast library for AutoML and tuning

    FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    CLIP

    CLIP

    CLIP, Predict the most relevant text snippet given an image

    CLIP (Contrastive Language-Image Pretraining) is a neural model that links images and text in a shared embedding space, allowing zero-shot image classification, similarity search, and multimodal alignment. It was trained on large sets of (image, caption) pairs using a contrastive objective: images and their matching text are pulled together in embedding space, while mismatches are pushed apart. Once trained, you can give it any text labels and ask it to pick which label best matches a given...
    Downloads: 0 This Week
    Last Update:
    See Project