Showing 88 open source projects for "visualization"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    PandasAI

    PandasAI

    PandasAI is a Python library that integrates generative AI

    PandasAI is a Python library that adds Generative AI capabilities to pandas, the popular data analysis and manipulation tool. It is designed to be used in conjunction with pandas, and is not a replacement for it. PandasAI makes pandas (and all the most used data analyst libraries) conversational, allowing you to ask questions to your data in natural language. For example, you can ask PandasAI to find all the rows in a DataFrame where the value of a column is greater than 5, and it will...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    TextAttack

    TextAttack

    Python framework for adversarial attacks, and data augmentation

    Generating adversarial examples for NLP models. TextAttack is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Materials Discovery: GNoME

    Materials Discovery: GNoME

    AI discovers 520000 stable inorganic crystal structures for research

    Materials Discovery (GNoME) is a large-scale research initiative by Google DeepMind focused on applying graph neural networks to accelerate the discovery of stable inorganic crystal materials. The project centers on Graph Networks for Materials Exploration (GNoME), a message-passing neural network architecture trained on density functional theory (DFT) data to predict material stability and energy formation. Using GNoME, DeepMind identified 381,000 new stable materials, later expanding the...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    airda

    airda

    airda(Air Data Agent

    airda(Air Data Agent) is a multi-smart body for data analysis, capable of understanding data development and data analysis needs, understanding data, generating data-oriented queries, data visualization, machine learning and other tasks of SQL and Python codes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Cloud data warehouse to power your data-driven innovation Icon
    Cloud data warehouse to power your data-driven innovation

    BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data.

    BigQuery Studio provides a single, unified interface for all data practitioners of various coding skills to simplify analytics workflows from data ingestion and preparation to data exploration and visualization to ML model creation and use. It also allows you to use simple SQL to access Vertex AI foundational models directly inside BigQuery for text processing tasks, such as sentiment analysis, entity extraction, and many more without having to deal with specialized models.
    Try for free
  • 5
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    ...Every-day common routines (fix/restore random seed, filesystem utils, metrics). Losses: BinaryFocalLoss, Focal, ReducedFocal, Lovasz, Jaccard and Dice losses, Wing Loss and more. Extras for Catalyst library (Visualization of batch predictions, additional metrics). By design, both encoder and decoder produces a list of tensors, from fine (high-resolution, indexed 0) to coarse (low-resolution) feature maps. Access to all intermediate feature maps is beneficial if you want to apply deep supervision losses on them or encoder-decoder of object detection task.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Streamline Analyst

    Streamline Analyst

    AI agent that streamlines the entire process of data analysis

    ...This Data Analysis Agent effortlessly automates all the tasks such as data cleaning, preprocessing, and even complex operations like identifying target objects, partitioning test sets, and selecting the best-fit models based on your data. With Streamline Analyst, results visualization and evaluation become seamless.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    tsai

    tsai

    Time series Timeseries Deep Learning Machine Learning Pytorch fastai

    tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series tasks like classification, regression, forecasting, and imputation. Starting with tsai 0.3.0 tsai will only install hard dependencies. Other soft dependencies (which are only required for selected tasks) will not be installed by default (this is the recommended approach. If you require any of the dependencies that is not installed, tsai will ask you to install...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    IVY

    IVY

    The Unified Machine Learning Framework

    ...For example, an existing TensorFlow model, and some useful functions from both PyTorch and NumPy libraries. Choose any framework for writing your higher-level pipeline, including data loading, distributed training, analytics, logging, visualization etc. Choose any backend framework which should be used under the hood, for running this entire pipeline. Choose the most appropriate device or combination of devices for your needs. DeepMind releases an awesome model on GitHub, written in JAX. We'll use PerceiverIO as an example. Implement the model in PyTorch yourself, spending time and energy ensuring every detail is correct. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Mesh R-CNN

    Mesh R-CNN

    code for Mesh R-CNN, ICCV 2019

    Mesh R-CNN is a 3D reconstruction and object understanding framework developed by Facebook Research that extends Mask R-CNN into the 3D domain. Built on top of Detectron2 and PyTorch3D, Mesh R-CNN enables end-to-end 3D mesh prediction directly from single RGB images. The model learns to detect, segment, and reconstruct detailed 3D mesh representations of objects in natural images, bridging the gap between 2D perception and 3D understanding. Unlike voxel-based or point-based approaches, Mesh...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Fully managed relational database service for MySQL, PostgreSQL, and SQL Server Icon
    Fully managed relational database service for MySQL, PostgreSQL, and SQL Server

    Focus on your application, and leave the database to us

    Cloud SQL manages your databases so you don't have to, so your business can run without disruption. It automates all your backups, replication, patches, encryption, and storage capacity increases to give your applications the reliability, scalability, and security they need.
    Try for free
  • 10
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    ...Neuron is pre-integrated into popular machine learning frameworks like TensorFlow, MXNet and Pytorch to provide a seamless training-to-inference workflow. It includes a compiler, runtime driver, as well as debug and profiling utilities with a TensorBoard plugin for visualization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    solo-learn

    solo-learn

    Library of self-supervised methods for visual representation

    A library of self-supervised methods for visual representation learning powered by Pytorch Lightning. A library of self-supervised methods for unsupervised visual representation learning powered by PyTorch Lightning. We aim at providing SOTA self-supervised methods in a comparable environment while, at the same time, implementing training tricks. The library is self-contained, but it is possible to use the models outside of solo-learn.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    The Simple Medical Imaging Library Interface (SMILI), pronounced 'smilie', is an open-source, light-weight and easy-to-use medical imaging viewer and library for all major operating systems. The main sMILX application features for viewing n-D images, vector images, DICOMs, anonymizing, shape analysis and models/surfaces with easy drag and drop functions. It also features a number of standard processing algorithms for smoothing, thresholding, masking etc. images and models, both with...
    Leader badge
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    Detectron

    Detectron

    FAIR's research platform for object detection research

    ...It includes training and evaluation pipelines that handle multi-GPU setups, standard datasets, and common augmentations, which helped standardize experimental practice in detection research. Visualization utilities and diagnostic scripts make it straightforward to inspect predictions, proposals, and losses while training. Although the project has since been superseded by Detectron2, the original Detectron remains a historically important, reproducible reference that still informs many productions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    CoTracker

    CoTracker

    CoTracker is a model for tracking any point (pixel) on a video

    CoTracker is a learning-based point tracking system that jointly follows many user-specified points across a video, rather than tracking each point independently. By reasoning about all tracks together, it can maintain temporal consistency, handle mutual occlusions, and reduce identity swaps when trajectories cross. The model takes sparse point queries on one frame and predicts their sub-pixel locations and a visibility score for every subsequent frame, producing long, coherent trajectories....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    EasyRL

    EasyRL

    Reinforcement learning (RL) tutorial series

    easy-rl is a beginner-friendly reinforcement learning (RL) tutorial series and framework developed by Datawhale China. It provides educational resources and implementations of various RL algorithms to help new researchers and practitioners learn RL concepts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    MMOCR

    MMOCR

    OpenMMLab Text Detection, Recognition and Understanding Toolbox

    ...Please refer to Getting Started for how to construct a customized model. The toolbox provides a comprehensive set of utilities which can help users assess the performance of models. It includes visualizers which allow visualization of images, ground truths as well as predicted bounding boxes, and a validation tool for evaluating checkpoints.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DiT (Diffusion Transformers)

    DiT (Diffusion Transformers)

    Official PyTorch Implementation of "Scalable Diffusion Models"

    DiT (Diffusion Transformer) is a powerful architecture that applies transformer-based modeling directly to diffusion generative processes for high-quality image synthesis. Unlike CNN-based diffusion models, DiT represents the diffusion process in the latent space and processes image tokens through transformer blocks with learned positional encodings, offering scalability and superior sample quality. The model architecture parallels large language models but for image tokens—each block...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Point-E

    Point-E

    Point cloud diffusion for 3D model synthesis

    point-e is the official repository for Point-E, a generative model developed by OpenAI that produces 3D point clouds from textual (or image) prompts. Its principal advantage is speed: it can generate 3D assets in just 1–2 minutes on a single GPU, which is significantly faster than many competing text-to-3D models. The model works via a two-stage diffusion approach: first, it uses a text → image diffusion network to produce a synthetic 2D view consistent with the prompt; then a second...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    FrankMocap

    FrankMocap

    A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

    FrankMocap is a monocular 3D human capture system that estimates body, hand, and optionally face pose from a single RGB image or video. It regresses parametric human models (e.g., SMPL/SMPL-X) directly, producing temporally stable meshes and joint angles suitable for animation or analytics. The pipeline couples a robust 2D keypoint detector with 3D mesh regression networks and priors that keep results anatomically plausible. It can run frame-by-frame or with temporal smoothing, and includes...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Menagerie

    Menagerie

    A collection of high-quality models for the MuJoCo physics engine

    ...The repository aims to improve reproducibility and quality across robotics research by providing verified models that adhere to consistent design and physical standards. Each model directory contains its 3D assets, MJCF XML definitions, licensing information, and example scenes for visualization and testing. The collection spans a wide range of categories including robotic arms, humanoids, quadrupeds, mobile manipulators, drones, and biomechanical systems. Users can access models directly via the robot_descriptions Python package or by cloning the repository for use in interactive MuJoCo simulations.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    Yellowbrick

    Yellowbrick

    Visual analysis and diagnostic tools to facilitate ML selection

    Yellowbrick extends the Scikit-Learn API to make model selection and hyperparameter tuning easier. Under the hood, it’s using Matplotlib. Yellowbrick is a suite of visual diagnostic tools called "Visualizers" that extend the scikit-learn API to allow human steering of the model selection process. In a nutshell, Yellowbrick combines scikit-learn with matplotlib in the best tradition of the scikit-learn documentation, but to produce visualizations for your machine learning workflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    PySC2

    PySC2

    StarCraft II learning environment

    PySC2 is DeepMind's Python component of the StarCraft II Learning Environment (SC2LE). It exposes Blizzard Entertainment's StarCraft II Machine Learning API as a Python RL Environment. This is a collaboration between DeepMind and Blizzard to develop StarCraft II into a rich environment for RL research. PySC2 provides an interface for RL agents to interact with StarCraft 2, getting observations and sending actions. The easiest way to get PySC2 is to use pip. That will install the pysc2...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Mask2Former

    Mask2Former

    Code release for "Masked-attention Mask Transformer

    ...The project provides extensive configurations and pretrained models across popular benchmarks like COCO, ADE20K, and Cityscapes. Built on top of Detectron2, it includes training scripts, inference tools, and visualization utilities that make experimentation straightforward.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    ...PyTorch 1.1+, and has been tested on Ubuntu 16.04/18.04/20.04, macOS 10.15, Windows 10 and Windows Subsystem for Linux. It's part of the PyTorch Ecosystem, as well as the Catalyst Ecosystem which includes Alchemy (experiments logging & visualization) and Reaction (convenient deep learning models serving).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    ...After pretraining, the encoder serves as a powerful backbone for downstream tasks like image classification, segmentation, and detection, achieving top performance with minimal fine-tuning. The repository provides pretrained models, fine-tuning scripts, evaluation protocols, and visualization tools for reconstruction quality and learned features.
    Downloads: 0 This Week
    Last Update:
    See Project