Showing 33 open source projects for "decoder"

View related business solutions
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • 1
    Reformer PyTorch

    Reformer PyTorch

    Reformer, the efficient Transformer, in Pytorch

    This is a Pytorch implementation of Reformer. It includes LSH attention, reversible network, and chunking. It has been validated with an auto-regressive task (enwik8).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    AliceMind

    AliceMind

    ALIbaba's Collection of Encoder-decoders from MinD

    This repository provides pre-trained encoder-decoder models and its related optimization techniques developed by Alibaba's MinD (Machine IntelligeNce of Damo) Lab. Pre-trained models for natural language understanding (NLU). We extend BERT to a new model, StructBERT, by incorporating language structures into pre-training. Specifically, we pre-train StructBERT with two auxiliary tasks to make the most of the sequential order of words and sentences, which leverage language structures at the word and sentence levels, respectively. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Denoiser

    Denoiser

    Real Time Speech Enhancement in the Waveform Domain (Interspeech 2020)

    Denoiser is a real-time speech enhancement model operating directly on raw waveforms, designed to clean noisy audio while running efficiently on CPU. It uses a causal encoder-decoder architecture with skip connections, optimized with losses defined both in the time domain and frequency domain to better suppress noise while preserving speech. Unlike models that operate on spectrograms alone, this design enables lower latency and coherent waveform output. The implementation includes data augmentation techniques applied to the raw waveforms (e.g. noise mixing, reverberation) to improve model robustness and generalization to diverse noise types. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    DETR

    DETR

    End-to-end object detection with transformers

    ...Unlike traditional computer vision techniques, DETR approaches object detection as a direct set prediction problem. It consists of a set-based global loss, which forces unique predictions via bipartite matching, and a Transformer encoder-decoder architecture. Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. Due to this parallel nature, DETR is very fast and efficient.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • 5
    Texar

    Texar

    Toolkit for Machine Learning, Natural Language Processing

    Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation. Texar was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes. A mirror of this...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    CakeChat

    CakeChat

    CakeChat: Emotional Generative Dialog System

    ...The code is flexible and allows to condition model's responses by an arbitrary categorical variable. For example, you can train your own persona-based neural conversational model or create an emotional chatting machine. Hierarchical Recurrent Encoder-Decoder (HRED) architecture for handling deep dialog context. Multilayer RNN with GRU cells. The first layer of the utterance-level encoder is always bidirectional. By default, CuDNNGRU implementation is used for ~25% acceleration during inference. Thought vector is fed into decoder on each decoding step. Decoder can be conditioned on any categorical label, for example, emotion label or persona id. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    OpenSeq2Seq

    OpenSeq2Seq

    Toolkit for efficient experimentation with Speech Recognition

    OpenSeq2Seq is a TensorFlow-based toolkit for efficient experimentation with sequence-to-sequence models across speech and NLP tasks. Its core goal is to give researchers a flexible, modular framework for building and training encoder–decoder architectures while fully leveraging distributed and mixed-precision training. The toolkit includes ready-made models for neural machine translation, automatic speech recognition, speech synthesis, language modeling, and additional NLP tasks such as sentiment analysis. It supports multi-GPU and multi-node data-parallel training, and integrates with Horovod to scale out across large GPU clusters. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    Distant Speech Recognition

    Beamforming and Speech Recognition Toolkit

    BTK contains C++ and Python libraries that implement speech processing and microphone array techniques such as speech feature extraction, speech enhancement, speaker tracking, beamforming, dereverberation and echo cancellation algorithms. The Millennium ASR provides C++ and python libraries for automatic speech recognition. The Millennium ASR implements a weighted finite state transducer (WFST) decoder, training and adaptation methods. These toolkits are meant for facilitating research and development of automatic distant speech recognition.
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB