Showing 10 open source projects for "decoder"

View related business solutions
  • Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud Icon
    Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud

    Get back to your application and leave the database to us. Cloud SQL automatically handles backups, replication, and scaling.

    Cloud SQL is a fully managed relational database for MySQL, PostgreSQL, and SQL Server. We handle patching, backups, replication, encryption, and failover—so you can focus on your app. Migrate from on-prem or other clouds with free Database Migration Service. IDC found customers achieved 246% ROI. New customers get $300 in credits plus a 30-day free trial.
    Try Cloud SQL Free
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    Step1X-Edit

    Step1X-Edit

    A SOTA open-source image editing model

    Step1X-Edit is a state-of-the-art open-source image editing model/framework that uses a multimodal large language model (LLM) together with a diffusion-based image decoder to let users edit images simply via natural-language instructions plus a reference image. You supply an existing image and a textual command — e.g. “add a ruby pendant on the girl’s neck” or “make the background a sunset over mountains” — and the model interprets the instruction, computes a latent embedding combining the image content and user intent, then decodes a new image implementing the edit. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    GLM-OCR

    GLM-OCR

    Accurate × Fast × Comprehensive

    GLM-OCR is an open-source multimodal optical character recognition (OCR) model built on a GLM-V encoder–decoder foundation that brings robust, accurate document understanding to complex real-world layouts and modalities. Designed to handle text recognition, table parsing, formula extraction, and general information retrieval from documents containing mixed content, GLM-OCR excels across major benchmarks while remaining highly efficient with a relatively compact parameter size (~0.9B), enabling deployment in high-concurrency services and edge environments. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    FireRedASR

    FireRedASR

    Open-source industrial-grade ASR models

    ...The project includes multiple model variants to meet different application needs, such as high-accuracy end-to-end interaction using an encoder-adapter-LLM framework and efficient real-time recognition using attention-based encoder-decoder architectures, giving developers flexibility in balancing performance and resource constraints. FireRedASR not only excels in traditional speech recognition tasks but also demonstrates strong capability in challenging scenarios like singing lyrics recognition, where accurate transcription is often difficult for conventional models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    IndexTTS2

    IndexTTS2

    Industrial-level controllable zero-shot text-to-speech system

    ...It builds on state-of-the-art models such as XTTS and other modern neural TTS backbones, improving them with a conformer-based speech conditional encoder and upgrading the decoder to a high-quality vocoder (BigVGAN2), leading to clearer and more natural audio output. The system supports zero-shot voice cloning — meaning it can mimic a target speaker’s voice from a short reference sample — making it versatile for multi-voice uses. Compared to many open-source TTS tools, IndexTTS emphasizes efficiency and controllability: it offers faster inference, simpler training pipelines, and controllable speech parameters (like duration, pitch, and prosody), which is critical for production use.
    Downloads: 1 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 5
    TimesFM

    TimesFM

    Pretrained time-series foundation model developed by Google Research

    TimesFM is a pretrained time-series foundation model from Google Research built for forecasting tasks, designed to generalize across many domains without requiring extensive per-dataset retraining. It provides a decoder-only model approach to forecasting, aiming for strong performance even in zero-shot or low-data settings where traditional models often struggle. The project includes code and an inference API intended to make it practical to run forecasts programmatically, with options to use different backends such as Torch or Flax depending on your environment and performance needs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    CSM (Conversational Speech Model)

    CSM (Conversational Speech Model)

    A Conversational Speech Generation Model

    The CSM (Conversational Speech Model) is a speech generation model developed by Sesame AI that creates RVQ audio codes from text and audio inputs. It uses a Llama backbone and a smaller audio decoder to produce audio codes for realistic speech synthesis. The model has been fine-tuned for interactive voice demos and is hosted on platforms like Hugging Face for testing. CSM offers a flexible setup and is compatible with CUDA-enabled GPUs for efficient execution.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    LaMDA-pytorch

    LaMDA-pytorch

    Open-source pre-training implementation of Google's LaMDA in PyTorch

    Open-source pre-training implementation of Google's LaMDA research paper in PyTorch. The totally not sentient AI. This repository will cover the 2B parameter implementation of the pre-training architecture as that is likely what most can afford to train. You can review Google's latest blog post from 2022 which details LaMDA here. You can also view their previous blog post from 2021 on the model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Mask2Former

    Mask2Former

    Code release for "Masked-attention Mask Transformer

    Mask2Former is a unified segmentation architecture that handles semantic, instance, and panoptic segmentation with one model and one training recipe. Its core idea is to cast segmentation as mask classification: a transformer decoder predicts a set of mask queries, each with an associated class score, eliminating the need for task-specific heads. A pixel decoder fuses multi-scale features and feeds masked attention in the transformer so each query focuses computation on its current spatial support. This leads to accurate masks with sharp boundaries and strong small-object performance while remaining efficient on high-resolution inputs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    ...It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the full image—making pretraining computationally efficient. After pretraining, the encoder serves as a powerful backbone for downstream tasks like image classification, segmentation, and detection, achieving top performance with minimal fine-tuning. The repository provides pretrained models, fine-tuning scripts, evaluation protocols, and visualization tools for reconstruction quality and learned features.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    Denoiser

    Denoiser

    Real Time Speech Enhancement in the Waveform Domain (Interspeech 2020)

    Denoiser is a real-time speech enhancement model operating directly on raw waveforms, designed to clean noisy audio while running efficiently on CPU. It uses a causal encoder-decoder architecture with skip connections, optimized with losses defined both in the time domain and frequency domain to better suppress noise while preserving speech. Unlike models that operate on spectrograms alone, this design enables lower latency and coherent waveform output. The implementation includes data augmentation techniques applied to the raw waveforms (e.g. noise mixing, reverberation) to improve model robustness and generalization to diverse noise types. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →