Showing 32 open source projects for "asynchronous"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 1
    Fedhf

    Fedhf

    A Flexible Federated Learning Simulator

    FedHF is a Python-based simulator for flexible, heterogeneous, and asynchronous federated learning research. It provides configurable resource models, supports asynchronous protocols, and accelerates experimentation.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    TensorFlowOnSpark

    TensorFlowOnSpark

    TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters

    By combining salient features from the TensorFlow deep learning framework with Apache Spark and Apache Hadoop, TensorFlowOnSpark enables distributed deep learning on a cluster of GPU and CPU servers. It enables both distributed TensorFlow training and inferencing on Spark clusters, with a goal to minimize the amount of code changes required to run existing TensorFlow programs on a shared grid.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    PyTorch-BigGraph

    PyTorch-BigGraph

    Generate embeddings from large-scale graph-structured data

    ...PBG supports multi-relation graphs (knowledge graphs) with relation-specific scoring functions, negative sampling strategies, and typed entities, making it suitable for link prediction and retrieval. Its training loop is built for throughput: asynchronous I/O, memory-mapped tensors, and lock-free updates keep GPUs and CPUs fed even at extreme scale. The toolkit includes evaluation metrics and export tools so learned embeddings can be used in downstream nearest-neighbor search, recommendation, or analytics. In practice, PBG’s design lets practitioners train high-quality graph embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    Scalable Distributed Deep-RL

    Scalable Distributed Deep-RL

    A TensorFlow implementation of Scalable Distributed Deep-RL

    Scalable Agent is the open implementation of IMPALA (Importance Weighted Actor-Learner Architectures), a highly scalable distributed reinforcement learning framework developed by Google DeepMind. IMPALA introduced a new paradigm for efficiently training agents across large-scale environments by decoupling acting and learning processes. In this architecture, multiple actor processes interact with their environments in parallel to collect trajectories, which are then asynchronously sent to a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras.

    keras-rl implements some state-of-the-art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course, you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Universe Starter Agent

    Universe Starter Agent

    A starter agent that can solve a number of universe environments

    ...Its purpose is to serve as a baseline or reference implementation so researchers or developers can see how to build agents that operate in real-time, visual environments (e.g., games, browser apps) via pixel observations and keyboard/mouse actions. Under the hood, this starter agent implements a version of the A3C (Asynchronous Advantage Actor-Critic) algorithm, adapted for the specific challenges of Universe environments (e.g., network latency, VNC streaming, asynchronous observations). The repo includes modules like train.py, worker.py, model.py, a3c.py, and envs.py to support training, parallel worker management, policy/critics, and environment wrappers.
    Downloads: 0 This Week
    Last Update:
    See Project