...PBG supports multi-relation graphs (knowledge graphs) with relation-specific scoring functions, negative sampling strategies, and typed entities, making it suitable for link prediction and retrieval. Its training loop is built for throughput: asynchronous I/O, memory-mapped tensors, and lock-free updates keep GPUs and CPUs fed even at extreme scale. The toolkit includes evaluation metrics and export tools so learned embeddings can be used in downstream nearest-neighbor search, recommendation, or analytics. In practice, PBG’s design lets practitioners train high-quality graph embeddings.