Showing 2042 open source projects for "pam-python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    xFormers

    xFormers

    Hackable and optimized Transformers building blocks

    ...One of its key goals is efficient attention: it supports dense, sparse, low-rank, and approximate attention mechanisms (e.g. FlashAttention, Linformer, Performer) via interchangeable modules. The library includes memory-efficient operator implementations in both Python and optimized C++/CUDA, ensuring that performance isn’t sacrificed for modularity. It also integrates with PyTorch seamlessly so you can drop in its blocks to existing models, replace default attention layers, or build new architectures from scratch. xformers includes training, deployment, and memory profiling tools.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    ImageReward

    ImageReward

    [NeurIPS 2023] ImageReward: Learning and Evaluating Human Preferences

    ...Trained on 137k expert-annotated image pairs, ImageReward significantly outperforms existing scoring methods like CLIP, Aesthetic, and BLIP in capturing human visual preferences. It is provided as a Python package (image-reward) that enables quick scoring of generated images against textual prompts, with APIs for ranking, scoring, and filtering outputs. Beyond evaluation, ImageReward supports Reward Feedback Learning (ReFL), a method for directly fine-tuning diffusion models such as Stable Diffusion using human-preference feedback, leading to demonstrable improvements in image quality.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TorchIO

    TorchIO

    Medical imaging toolkit for deep learning

    ...TorchIO is a Python package containing a set of tools to efficiently read, preprocess, sample, augment, and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Haiku

    Haiku

    JAX-based neural network library

    ...It preserves Sonnet’s module-based programming model for state management while retaining access to JAX’s function transformations. Haiku can be expected to compose with other libraries and work well with the rest of JAX. Similar to Sonnet modules, Haiku modules are Python objects that hold references to their own parameters, other modules, and methods that apply functions on user inputs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Leverage AI to Automate Medical Coding Icon
    Leverage AI to Automate Medical Coding

    Medical Coding Solution

    As a healthcare provider, you should be paid promptly for the services you provide to patients. Slow, inefficient, and error-prone manual coding keeps you from the financial peace you deserve. XpertDox’s autonomous coding solution accelerates the revenue cycle so you can focus on providing great healthcare.
    Learn More
  • 5
    Zettelkasten MCP

    Zettelkasten MCP

    Implements the Zettelkasten knowledge management methodology

    The Zettelkasten MCP Server is a Model Context Protocol (MCP) server that implements the Zettelkasten knowledge management methodology. It allows users to create, link, and manage notes, facilitating a structured and interconnected note-taking system. ​
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    LangCheck

    LangCheck

    Simple, Pythonic building blocks to evaluate LLM applications

    Simple, Pythonic building blocks to evaluate LLM applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MLE-Agent

    MLE-Agent

    Intelligent companion for seamless AI engineering and research

    MLE-Agent is designed as a pairing LLM agent for machine learning engineers and researchers. A library designed for managing machine learning experiments, tracking metrics, and model deployment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    TorchMetrics AI

    TorchMetrics AI

    Machine learning metrics for distributed, scalable PyTorch application

    TorchMetrics is a collection of 100+ PyTorch metrics implementations and an easy-to-use API to create custom metrics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TreeQuest

    TreeQuest

    A Tree Search Library with Flexible API for LLM Inference-Time Scaling

    TreeQuest, developed by SakanaAI, is a versatile Python library implementing adaptive tree search algorithms—such as AB‑MCTS—for enhancing inference-time performance of large language models (LLMs). It allows developers to define custom state-generation and scoring functions (e.g., via LLMs), and then efficiently explores possible answer trees during runtime. With support for multi-LLM collaboration, checkpointing, and mixed policies, TreeQuest enables smarter, trial‑and‑error question answering by leveraging both breadth (multiple attempts) and depth (iterative refinement) strategies to find better outputs dynamically
    Downloads: 0 This Week
    Last Update:
    See Project
  • Trumba is an All-in-one Calendar Management and Event Registration platform Icon
    Trumba is an All-in-one Calendar Management and Event Registration platform

    Great for live, virtual and hybrid events

    Publish, promote and track your events more affordably and effectively—all in one place.
    Learn More
  • 10
    PilottAI

    PilottAI

    Python framework for building scalable multi-agent systems

    pilottai is an AI-based autonomous drone navigation system utilizing reinforcement learning for real-time decision-making. It is designed for simulating and training drones to fly safely through dynamic environments using AI-based controllers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Prompt flow

    Prompt flow

    Build high-quality LLM apps

    Prompt flow is a suite of development tools designed to streamline the end-to-end development cycle of LLM-based AI applications, from ideation, prototyping, testing, and evaluation to production deployment and monitoring. It makes prompt engineering much easier and enables you to build LLM apps with production quality.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    sktime

    sktime

    A unified framework for machine learning with time series

    sktime is a library for time series analysis in Python. It provides a unified interface for multiple time series learning tasks. Currently, this includes time series classification, regression, clustering, annotation, and forecasting. It comes with time series algorithms and scikit-learn compatible tools to build, tune and validate time series models. Our objective is to enhance the interoperability and usability of the time series analysis ecosystem in its entirety. sktime provides a unified interface for distinct but related time series learning tasks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    GPTCache

    GPTCache

    Semantic cache for LLMs. Fully integrated with LangChain

    ChatGPT and various large language models (LLMs) boast incredible versatility, enabling the development of a wide range of applications. However, as your application grows in popularity and encounters higher traffic levels, the expenses related to LLM API calls can become substantial. Additionally, LLM services might exhibit slow response times, especially when dealing with a significant number of requests. To tackle this challenge, we have created GPTCache, a project dedicated to building a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Agent Payments Protocol (AP2)

    Agent Payments Protocol (AP2)

    Building a Secure and Interoperable Future for AI-Driven Payments

    ...In effect, AP2 aims to define a secure, interoperable protocol that allows software agents to act on behalf of users—making payments or shopping decisions autonomously—while preserving necessary security, auditability, and trust. The repository contains sample scenarios (in Python, Android, etc.) that illustrate how agents, servers, and payments flows would work under the protocol. It includes “types” definitions (the core message and object schema) and example agent implementations to demonstrate the mechanics of agent-to-agent and agent-to-server interactions. The design emphasizes flexibility: although their samples use a particular Agent Development Kit (ADK) or runtime, the protocol is intended to be independent of those choices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    VectorizedMultiAgentSimulator (VMAS)

    VectorizedMultiAgentSimulator (VMAS)

    VMAS is a vectorized differentiable simulator

    VectorizedMultiAgentSimulator is a high-performance, vectorized simulator for multi-agent systems, focusing on large-scale agent interactions in shared environments. It is designed for research in multi-agent reinforcement learning, robotics, and autonomous systems where thousands of agents need to be simulated efficiently.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Qlib

    Qlib

    Qlib is an AI-oriented quantitative investment platform

    Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies. An increasing number of SOTA Quant research works/papers are released in Qlib. With Qlib, users can easily try their ideas to create better Quant investment strategies. At the module level, Qlib is a platform that consists of...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    Open-AutoGLM

    Open-AutoGLM

    An open phone agent model & framework

    Open-AutoGLM is an open-source framework and model designed to empower autonomous mobile intelligent assistants by enabling AI agents to understand and interact with phone screens in a multimodal manner, blending vision and language capability to control real devices. It aims to create an “AI phone agent” that can perceive on-screen content, reason about user goals, and execute sequences of taps, swipes, and text input via automated device control interfaces like ADB, enabling hands-off...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 18
    ChatGPT Clone

    ChatGPT Clone

    ChatGPT interface with better UI

    ChatGPT Clone demonstrates a ChatGPT-style conversational interface wired to large-language-model backends, packaged so developers can self-host and extend. The goal is to replicate the core chat UX—message history, streaming tokens, code blocks, and system prompts—while letting you plug in different provider APIs or local models. It showcases a clean separation between the web client and the message orchestration layer so you can experiment with prompts, roles, and memory strategies. The...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 19
    VGGSfM

    VGGSfM

    VGGSfM: Visual Geometry Grounded Deep Structure From Motion

    VGGSfM is an advanced structure-from-motion (SfM) framework jointly developed by Meta AI Research (GenAI) and the University of Oxford’s Visual Geometry Group (VGG). It reconstructs 3D geometry, dense depth, and camera poses directly from unordered or sequential images and videos. The system combines learned feature matching and geometric optimization to generate high-quality camera calibrations, sparse/dense point clouds, and depth maps in standard COLMAP format. Version 2.0 adds support...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 20
    Khoj

    Khoj

    An AI personal assistant for your digital brain

    Get more done with your open-source AI personal assistant. Khoj is a desktop application to search and chat with your notes, documents, and images. It is an offline-first, open-source AI personal assistant that is accessible from Emacs, Obsidian or your Web browser. Khoj is a thinking tool that is transparent, fun, and easy to engage with. You can build faster and better by using Khoj to search and reason across all your data sources. Khoj learns from your notes and documents to function as...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 21
    Deep Lake

    Deep Lake

    Data Lake for Deep Learning. Build, manage, and query datasets

    Deep Lake (formerly known as Activeloop Hub) is a data lake for deep learning applications. Our open-source dataset format is optimized for rapid streaming and querying of data while training models at scale, and it includes a simple API for creating, storing, and collaborating on AI datasets of any size. It can be deployed locally or in the cloud, and it enables you to store all of your data in one place, ranging from simple annotations to large videos. Deep Lake is used by Google, Waymo,...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 22
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 23
    Vision Transformer Pytorch

    Vision Transformer Pytorch

    Implementation of Vision Transformer, a simple way to achieve SOTA

    This repository provides a from-scratch, minimalist implementation of the Vision Transformer (ViT) in PyTorch, focusing on the core architectural pieces needed for image classification. It breaks down the model into patch embedding, positional encoding, multi-head self-attention, feed-forward blocks, and a classification head so you can understand each component in isolation. The code is intentionally compact and modular, which makes it easy to tinker with hyperparameters, depth, width, and...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 24
    Lemonade

    Lemonade

    Lemonade helps users run local LLMs with the highest performance

    Lemonade is a local LLM runtime that aims to deliver the highest possible performance on your own hardware by auto-configuring state-of-the-art inference engines for both NPUs and GPUs. The project positions itself as a “local LLM server” you can run on laptops and workstations, abstracting away backend differences while giving you a single place to serve and manage models. Its README emphasizes real-world adoption across startups, research groups, and large companies, signaling a focus on...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 25
    CodeGeeX2

    CodeGeeX2

    CodeGeeX2: A More Powerful Multilingual Code Generation Model

    CodeGeeX2 is the second-generation multilingual code generation model from ZhipuAI, built upon the ChatGLM2-6B architecture and trained on 600B code tokens. Compared to the first generation, it delivers a significant boost in programming ability across multiple languages, outperforming even larger models like StarCoder-15B in some benchmarks despite having only 6B parameters. The model excels at code generation, translation, summarization, debugging, and comment generation, and it supports...
    Downloads: 6 This Week
    Last Update:
    See Project