Showing 657 open source projects for "machine"

View related business solutions
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud Icon
    Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud

    Get back to your application and leave the database to us. Cloud SQL automatically handles backups, replication, and scaling.

    Cloud SQL is a fully managed relational database for MySQL, PostgreSQL, and SQL Server. We handle patching, backups, replication, encryption, and failover—so you can focus on your app. Migrate from on-prem or other clouds with free Database Migration Service. IDC found customers achieved 246% ROI. New customers get $300 in credits plus a 30-day free trial.
    Try Cloud SQL Free
  • 1
    TorchGAN

    TorchGAN

    Research Framework for easy and efficient training of GANs

    The torchgan package consists of various generative adversarial networks and utilities that have been found useful in training them. This package provides an easy-to-use API which can be used to train popular GANs as well as develop newer variants. The core idea behind this project is to facilitate easy and rapid generative adversarial model research. TorchGAN is a Pytorch-based framework for designing and developing Generative Adversarial Networks. This framework has been designed to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Aquila DB

    Aquila DB

    An easy to use Neural Search Engine

    ...In other words, it is a database to index Latent Vectors generated by ML models along with JSON Metadata to perform k-NN retrieval. It is dead simple to set up, language-agnostic, and drop in addition to your Machine Learning Applications. Aquila DB, as of current features is a ready solution for Machine Learning engineers and Data scientists to build Neural Information Retrieval applications out of the box with minimal dependencies.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Machine-Learning

    Machine-Learning

    kNN, decision tree, Bayesian, logistic regression, SVM

    Machine-Learning is a repository focused on practical machine learning implementations in Python, covering classic algorithms like k-Nearest Neighbors, decision trees, naive Bayes, logistic regression, support vector machines, linear and tree-based regressions, and likely corresponding code examples and documentation. It targets learners or practitioners who want to understand and implement ML algorithms from scratch or via standard libraries, gaining hands-on experience rather than relying solely on black-box frameworks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    VoiceFixer

    VoiceFixer

    General Speech Restoration

    VoiceFixer is a machine-learning framework for “speech restoration”: given a degraded or distorted audio recording — with noise, clipping, low sampling rate, reverberation, or other artifacts — it attempts to recover high-fidelity, clean speech. The architecture works in two stages: first an analysis stage that tries to extract “clean” intermediate features from the noisy audio (e.g. removing noise, denoising, dereverberation, upsampling), and then a neural vocoder-based synthesis stage that reconstructs a high-quality waveform from those features. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • 5
    Perceptual Similarity Metric and Dataset

    Perceptual Similarity Metric and Dataset

    LPIPS metric. pip install lpips

    While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Tez

    Tez

    Tez is a super-simple and lightweight Trainer for PyTorch

    Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch. tez (तेज़ / تیز) means sharp, fast & active. This is a simple, to-the-point, library to make your PyTorch training easy. This library is in early-stage currently! So, there might be breaking changes. Currently, tez supports cpu, single gpu and multi-gpu & tpu training. More coming soon! Using tez is super-easy. We don't want you to...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    CleverHans

    CleverHans

    An adversarial example library for constructing attacks

    ...In versions v3.1.0 and prior, CleverHans supported TF1; the code for v3.1.0 can be found under cleverhans_v3.1.0/ or by checking out a prior Github release. The library focuses on providing a reference implementation of attacks against machine learning models to help with benchmarking models against adversarial examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    All-in-one web-based development environment for machine learning. The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    DeepImageTranslator

    DeepImageTranslator

    DeepImageTranslator: a deep-learning utility for image translation

    Created by: Run Zhou Ye, En Zhou Ye, and En Hui Ye DeepImageTranslator: a free, user-friendly tool for image translation using deep-learning and its applications in CT image analysis Citation: Please cite this software as: Ye RZ, Noll C, Richard G, Lepage M, Turcotte ÉE, Carpentier AC. DeepImageTranslator: a free, user-friendly graphical interface for image translation using deep-learning and its applications in 3D CT image analysis. SLAS technology. 2022 Feb 1;27(1):76-84....
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 10
    Machine Learning Collection

    Machine Learning Collection

    A resource for learning about Machine learning & Deep Learning

    A resource for learning about Machine learning & Deep Learning. In this repository, you will find tutorials and projects related to Machine Learning. I try to make the code as clear as possible, and the goal is be to used as a learning resource and a way to look up problems to solve specific problems. For most, I have also done video explanations on YouTube if you want a walkthrough for the code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    U-Net Fusion RFI

    U-Net Fusion RFI

    U-Net for RFI Detection based on @jakeret's implementation

    See original code here: https://github.com/jakeret/tf_unet Currently this project is based on Tensorflow 1.13 code base and there are no plans to transfer to TF version 2. The primary improvements to this code base include a training and evaluation framework, along with a fusion based approach to detection, combining a number of models (currently hard coded to two trained models) along with Sum Threshold as an additional "expert." Additional work is being done to add custom layers to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Texthero

    Texthero

    Text preprocessing, representation and visualization from zero to hero

    Texthero is a python package to work with text data efficiently. It empowers NLP developers with a tool to quickly understand any text-based dataset and it provides a solid pipeline to clean and represent text data, from zero to hero.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Kashgari

    Kashgari

    Kashgari is a production-level NLP Transfer learning framework

    Kashgari is a simple and powerful NLP Transfer learning framework, build a state-of-art model in 5 minutes for named entity recognition (NER), part-of-speech tagging (PoS), and text classification tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DeepMosaics

    DeepMosaics

    Automatically remove the mosaics in images and videos, or add mosaics

    Automatically remove the mosaics in images and videos, or add mosaics to them. This project is based on "semantic segmentation" and "Image-to-Image Translation". You can either run DeepMosaics via a pre-built binary package, or from source. Run time depends on the computer's performance (GPU version has better performance but requires CUDA to be installed). Different pre-trained models are suitable for different effects.[Introduction to pre-trained models].
    Downloads: 107 This Week
    Last Update:
    See Project
  • 15
    FARM

    FARM

    Fast & easy transfer learning for NLP

    FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built upon transformers and provides additional features to simplify the life of developers: Parallelized preprocessing, highly modular design, multi-task learning, experiment tracking, easy debugging and close integration with AWS SageMaker. With FARM you can build fast proofs-of-concept for tasks like text classification, NER or question answering and transfer them easily into production. Easy fine-tuning...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    AliceMind

    AliceMind

    ALIbaba's Collection of Encoder-decoders from MinD

    This repository provides pre-trained encoder-decoder models and its related optimization techniques developed by Alibaba's MinD (Machine IntelligeNce of Damo) Lab. Pre-trained models for natural language understanding (NLU). We extend BERT to a new model, StructBERT, by incorporating language structures into pre-training. Specifically, we pre-train StructBERT with two auxiliary tasks to make the most of the sequential order of words and sentences, which leverage language structures at the word and sentence levels, respectively. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    SRU

    SRU

    Training RNNs as Fast as CNNs

    Common recurrent neural architectures scale poorly due to the intrinsic difficulty in parallelizing their state computations. In this work, we propose the Simple Recurrent Unit (SRU), a light recurrent unit that balances model capacity and scalability. SRU is designed to provide expressive recurrence, enable highly parallelized implementation, and comes with careful initialization to facilitate the training of deep models. We demonstrate the effectiveness of SRU on multiple NLP tasks. SRU...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Minkowski Engine

    Minkowski Engine

    Auto-diff neural network library for high-dimensional sparse tensors

    The Minkowski Engine is an auto-differentiation library for sparse tensors. It supports all standard neural network layers such as convolution, pooling, unspooling, and broadcasting operations for sparse tensors. The Minkowski Engine supports various functions that can be built on a sparse tensor. We list a few popular network architectures and applications here. To run the examples, please install the package and run the command in the package root directory. Compressing a neural network to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Hands-on Unsupervised Learning

    Hands-on Unsupervised Learning

    Code for Hands-on Unsupervised Learning Using Python (O'Reilly Media)

    This repo contains the code for the O'Reilly Media, Inc. book "Hands-on Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data" by Ankur A. Patel. Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to the holy grail in AI research, the so-called general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied; this is where unsupervised learning comes in. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Opyrator

    Opyrator

    Turns your machine learning code into microservices with web API

    Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and executable files or Docker images. Opyrator builds on open standards - OpenAPI, JSON Schema, and Python type hints - and is powered by FastAPI, Streamlit, and Pydantic. It cuts out all the pain for productizing and sharing your Python code - or anything you can wrap into a single Python...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    SimCSE

    SimCSE

    SimCSE: Simple Contrastive Learning of Sentence Embeddings

    SimCSE (Simple Contrastive Learning of Sentence Embeddings) is a machine learning framework for training sentence embeddings using contrastive learning. It improves representation learning for NLP tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DrQA

    DrQA

    Reading Wikipedia to Answer Open-Domain Questions

    DrQA is an open-domain question answering system that reads large text corpora—famously Wikipedia—to answer natural language questions with extractive spans. It follows a two-stage pipeline: a fast document retriever first narrows down candidate articles, and a neural machine reader then predicts the exact answer span from those passages. The retriever relies on classic IR features (like TF-IDF and n-gram statistics) to remain lightweight and scalable to millions of documents. The reader is a neural model trained on supervised QA data to estimate start and end positions within a paragraph, and it can be adapted to new domains through fine-tuning or distant supervision. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Pytorch Points 3D

    Pytorch Points 3D

    Pytorch framework for doing deep learning on point clouds

    Torch Points 3D is a framework for developing and testing common deep learning models to solve tasks related to unstructured 3D spatial data i.e. Point Clouds. The framework currently integrates some of the best-published architectures and it integrates the most common public datasets for ease of reproducibility. It heavily relies on Pytorch Geometric and Facebook Hydra library thanks for the great work! We aim to build a tool that can be used for benchmarking SOTA models, while also...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DeepSpeech

    DeepSpeech

    Open source embedded speech-to-text engine

    DeepSpeech is an open source embedded (offline, on-device) speech-to-text engine which can run in real time on devices ranging from a Raspberry Pi 4 to high power GPU servers. DeepSpeech is an open-source Speech-To-Text engine, using a model trained by machine learning techniques based on Baidu's Deep Speech research paper. Project DeepSpeech uses Google's TensorFlow to make the implementation easier. A pre-trained English model is available for use and can be downloaded following the instructions in the usage docs. If you want to use the pre-trained English model for performing speech-to-text, you can download it (along with other important inference material) from the DeepSpeech releases page.
    Downloads: 22 This Week
    Last Update:
    See Project
  • 25
    Couler

    Couler

    Unified Interface for Constructing and Managing Workflows

    Couler is a system designed for unified machine learning workflow optimization in the cloud. Couler endeavors to provide a unified interface for constructing and optimizing workflows across various workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow. Couler enhances workflow efficiency through features like Autonomous Workflow Construction, Automatic Artifact Caching Mechanisms, Big Workflow Auto Parallelism Optimization, and Automatic Hyperparameters Tuning.
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB