Showing 657 open source projects for "machine"

View related business solutions
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • 1
    Z80-μLM

    Z80-μLM

    Z80-μLM is a 2-bit quantized language model

    ...A key deliverable is producing CP/M-compatible .COM binaries, enabling a genuinely vintage “chat with your computer” experience on real hardware or accurate emulators. The project sits at the intersection of machine learning and systems constraints, showing how model architecture, quantization, and inference code generation can be adapted to extreme memory and compute limits. It also functions as an educational reference for how to reduce inference to operations that fit an old-school instruction set and runtime environment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Superduper

    Superduper

    Superduper: Integrate AI models and machine learning workflows

    Superduper is a Python-based framework for building end-2-end AI-data workflows and applications on your own data, integrating with major databases. It supports the latest technologies and techniques, including LLMs, vector-search, RAG, and multimodality as well as classical AI and ML paradigms. Developers may leverage Superduper by building compositional and declarative objects that out-source the details of deployment, orchestration versioning, and more to the Superduper engine. This...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Label Sleuth

    Label Sleuth

    Open source no-code system for text annotation and building of text

    ...No AI knowledge needed. From task definition to working model in just a few hours! While domain experts label their data, Label Sleuth automatically trains in the background-appropriate machine learning models. To avoid wasted labeling effort, Label Sleuth employs active learning techniques to guide the user in what they should be labeled next. Domain experts can quickly start labeling their data through an intuitive user interface. Developed by researchers across industry and academia, Label Sleuth incorporates the latest research from human-computer interaction, natural language processing, and artificial intelligence. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Python Client For NLP Cloud

    Python Client For NLP Cloud

    NLP Cloud serves high performance pre-trained or custom models for NER

    NLP Cloud serves high performance pre-trained or custom models for NER, sentiment-analysis, classification, summarization, dialogue summarization, paraphrasing, intent classification, product description and ad generation, chatbot, grammar and spelling correction, keywords and keyphrases extraction, text generation, image generation, blog post generation, source code generation, question answering, automatic speech recognition, machine translation, language detection, semantic search, semantic similarity, tokenization, POS tagging, embeddings, and dependency parsing. It is ready for production, served through a REST API. You can either use the NLP Cloud pre-trained models, fine-tune your own models, or deploy your own models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • 5
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    ...Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference, transforms etc. They've been tested for machine learning workloads on Amazon EC2, Amazon ECS and Amazon EKS services as well. This project is licensed under the Apache-2.0 License. Ensure you have access to an AWS account i.e. setup your environment such that awscli can access your account via either an IAM user or an IAM role.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    ...Select any of the publicly available datasets from the SDV project, or input your own data. Choose from any of the SDV synthesizers and baselines. Or write your own custom machine learning model. In addition to performance and memory usage, you can also measure synthetic data quality and privacy through a variety of metrics. Install SDGym using pip or conda. We recommend using a virtual environment to avoid conflicts with other software on your device.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    FinRobot

    FinRobot

    An Open-Source AI Agent Platform for Financial Analysis using LLMs

    ...It provides developers and quants with structured modules to fetch market data, process time series, generate technical indicators, and construct features appropriate for machine learning models, while also supporting backtesting and evaluation metrics to measure strategy performance. Built with modularity in mind, FinRobot allows users to plug in custom models — from classical algorithms to deep learning architectures — and orchestrate components in pipelines that can run reproducibly across experiments. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Lingvo

    Lingvo

    Framework for building neural networks

    ...It has been used to implement state of the art architectures such as recurrent neural networks, Transformer models, variational autoencoder hybrids, and multi task systems. Lingvo includes reference models and configurations for domains like machine translation, automatic speech recognition, language modeling, image understanding, and 3D object detection. Centralized hyperparameter configuration files allow researchers to share exact experiment setups so others can retrain and compare results reliably.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    KServe

    KServe

    Standardized Serverless ML Inference Platform on Kubernetes

    KServe provides a Kubernetes Custom Resource Definition for serving machine learning (ML) models on arbitrary frameworks. It aims to solve production model serving use cases by providing performant, high abstraction interfaces for common ML frameworks like Tensorflow, XGBoost, ScikitLearn, PyTorch, and ONNX. It encapsulates the complexity of autoscaling, networking, health checking, and server configuration to bring cutting edge serving features like GPU Autoscaling, Scale to Zero, and Canary Rollouts to your ML deployments. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Go from Data Warehouse to Data and AI platform with BigQuery Icon
    Go from Data Warehouse to Data and AI platform with BigQuery

    Build, train, and run ML models with simple SQL. Automate data prep, analysis, and predictions with built-in AI assistance from Gemini.

    BigQuery is more than a data warehouse—it's an autonomous data-to-AI platform. Use familiar SQL to train ML models, run time-series forecasts, and generate AI-powered insights with native Gemini integration. Built-in agents handle data engineering and data science workflows automatically. Get $300 in free credit, query 1 TB, and store 10 GB free monthly.
    Try BigQuery Free
  • 10
    airda

    airda

    airda(Air Data Agent

    airda(Air Data Agent) is a multi-smart body for data analysis, capable of understanding data development and data analysis needs, understanding data, generating data-oriented queries, data visualization, machine learning and other tasks of SQL and Python codes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Cleanlab

    Cleanlab

    The standard data-centric AI package for data quality and ML

    cleanlab helps you clean data and labels by automatically detecting issues in a ML dataset. To facilitate machine learning with messy, real-world data, this data-centric AI package uses your existing models to estimate dataset problems that can be fixed to train even better models. cleanlab cleans your data's labels via state-of-the-art confident learning algorithms, published in this paper and blog. See some of the datasets cleaned with cleanlab at labelerrors.com.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    marqo

    marqo

    Tensor search for humans

    A tensor-based search and analytics engine that seamlessly integrates with your applications, websites, and workflows. Marqo is a versatile and robust search and analytics engine that can be integrated into any website or application. Due to horizontal scalability, Marqo provides lightning-fast query times, even with millions of documents. Marqo helps you configure deep-learning models like CLIP to pull semantic meaning from images. It can seamlessly handle image-to-image, image-to-text and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Recurrent Interface Network (RIN)

    Recurrent Interface Network (RIN)

    Implementation of Recurrent Interface Network (RIN)

    ...The last ingredient seems to be a new noise function based around the sigmoid, which the author claims is better than cosine scheduler for larger images. The big surprise is that the generations can reach this level of fidelity. Will need to verify this on my own machine. Additionally, we will try adding an extra linear attention on the main branch as well as self-conditioning in the pixel space. The insight of being able to self-condition on any hidden state of the network as well as the newly proposed sigmoid noise schedule are the two main findings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    tf2onnx

    tf2onnx

    Convert TensorFlow, Keras, Tensorflow.js and Tflite models to ONNX

    tf2onnx converts TensorFlow (tf-1.x or tf-2.x), keras, tensorflow.js and tflite models to ONNX via command line or python API. Note: tensorflow.js support was just added. While we tested it with many tfjs models from tfhub, it should be considered experimental. TensorFlow has many more ops than ONNX and occasionally mapping a model to ONNX creates issues. tf2onnx will use the ONNX version installed on your system and installs the latest ONNX version if none is found. We support and test ONNX...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Sonnet

    Sonnet

    TensorFlow-based neural network library

    Sonnet is a neural network library built on top of TensorFlow designed to provide simple, composable abstractions for machine learning research. Sonnet can be used to build neural networks for various purposes, including different types of learning. Sonnet’s programming model revolves around a single concept: modules. These modules can hold references to parameters, other modules and methods that apply some function on the user input. There are a number of predefined modules that already ship with Sonnet, making it quite powerful and yet simple at the same time. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    PromptTools

    PromptTools

    Open-source tools for prompt testing and experimentation

    Welcome to prompttools created by Hegel AI! This repo offers a set of open-source, self-hostable tools for experimenting with, testing, and evaluating LLMs, vector databases, and prompts. The core idea is to enable developers to evaluate using familiar interfaces like code, notebooks, and a local playground.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    SSD in PyTorch 1.0

    SSD in PyTorch 1.0

    High quality, fast, modular reference implementation of SSD in PyTorch

    This repository implements SSD (Single Shot MultiBox Detector). The implementation is heavily influenced by the projects ssd.pytorch, pytorch-ssd and maskrcnn-benchmark. This repository aims to be the code base for research based on SSD. Multi-GPU training and inference: We use DistributedDataParallel, you can train or test with arbitrary GPU(s), the training schema will change accordingly. Add your own modules without pain. We abstract backbone, Detector, BoxHead, BoxPredictor, etc. You can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    vocal-separate

    vocal-separate

    An extremely simple tool for separating vocals and background music

    vocal-separate is a simple but effective audio processing application that isolates vocals and instrumental tracks from music and video files using stem-based source separation models, enabling tasks such as karaoke creation, remixing, and music analysis. Built as a localized web-based tool, it runs entirely on the user’s machine without requiring an internet connection, emphasizing privacy and convenience for creative work. Users can drag and drop an audio or video file onto the interface to begin separation, choosing between two, four, or five stems, which allows isolating specific components like vocals, bass, drums, or piano depending on the chosen model. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 19
    BackgroundMattingV2

    BackgroundMattingV2

    Real-Time High-Resolution Background Matting

    Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires capturing an additional background image and produces state-of-the-art matting results at 4K 30fps and HD 60fps on an Nvidia RTX 2080 TI GPU.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Obsei

    Obsei

    Obsei is a low code AI powered automation tool

    Obsei is an automated no-code/low-code AI-powered text observation and analysis framework, designed for extracting insights from unstructured text data such as social media, reviews, and logs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    MMEditing

    MMEditing

    MMEditing is a low-level vision toolbox based on PyTorch

    MMEditing is an open-source toolbox for low-level vision. It supports various tasks. MMEditing is a low-level vision toolbox based on PyTorch, supporting super-resolution, inpainting, matting, video interpolation, etc. We decompose the editing framework into different components and one can easily construct a customized editor framework by combining different modules. The toolbox directly supports popular and contemporary inpainting, matting, super-resolution and generation tasks. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    CLIP-as-service

    CLIP-as-service

    Embed images and sentences into fixed-length vectors

    CLIP-as-service is a low-latency high-scalability service for embedding images and text. It can be easily integrated as a microservice into neural search solutions. Serve CLIP models with TensorRT, ONNX runtime and PyTorch w/o JIT with 800QPS[*]. Non-blocking duplex streaming on requests and responses, designed for large data and long-running tasks. Horizontally scale up and down multiple CLIP models on single GPU, with automatic load balancing. Easy-to-use. No learning curve, minimalist...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    GPT-2 Output Dataset

    GPT-2 Output Dataset

    Dataset of GPT-2 outputs for research in detection, biases, and more

    ...It contains 250,000 samples of GPT-2 outputs, generated with different sampling strategies such as top-k truncation, to highlight the diversity and quality of model completions. The dataset also includes corresponding human-written text for comparison, enabling researchers to explore methods for distinguishing machine-generated content from human-authored text. The repository provides scripts and metadata for working with the dataset, with the goal of supporting research in areas like detection, evaluation of text coherence, and analysis of generative models. While no active development is expected, the dataset remains a useful benchmark for tasks involving text classification, style analysis, and generative model evaluation.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    AStro inFER - a rule miner and executer
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB