Open Source MATLAB Artificial Intelligence Software

MATLAB Artificial Intelligence Software

View 11490 business solutions

Browse free open source MATLAB Artificial Intelligence Software and projects below. Use the toggles on the left to filter open source MATLAB Artificial Intelligence Software by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads: http://arma.sourceforge.net/download.html * Documentation: http://arma.sourceforge.net/docs.html * Bug reports: http://arma.sourceforge.net/faq.html * Git repo: https://gitlab.com/conradsnicta/armadillo-code
    Leader badge
    Downloads: 2,426 This Week
    Last Update:
    See Project
  • 2

    OpenFace

    A state-of-the-art facial behavior analysis toolkit

    OpenFace is an advanced facial behavior analysis toolkit intended for computer vision and machine learning researchers, those in the affective computing community, and those who are simply interested in creating interactive applications based on facial behavior analysis. The OpenFace toolkit is capable of performing several complex facial analysis tasks, including facial landmark detection, eye-gaze estimation, head pose estimation and facial action unit recognition. OpenFace is able to deliver state-of-the-art results in all of these mentioned tasks. OpenFace is available for Windows, Ubuntu and macOS installations. It is capable of real-time performance and does not need to run on any specialist hardware, a simple webcam will suffice.
    Downloads: 41 This Week
    Last Update:
    See Project
  • 3
    VGGFace2

    VGGFace2

    VGGFace2 Dataset for Face Recognition

    VGGFace2 is a large-scale face recognition dataset developed to support research on facial recognition across variations in pose, age, illumination, and identity. It consists of 3.31 million images covering 9,131 subjects, with an average of over 360 images per subject. The dataset was collected from Google Image Search, ensuring a wide diversity in ethnicity, profession, and real-world conditions. It is split into a training set with 8,631 identities and a test set with 500 identities, making it suitable for benchmarking and large-scale model training. Alongside the dataset, the repository provides pre-trained models based on ResNet-50 and SE-ResNet-50 architectures, trained with both MS-Celeb-1M pretraining and fine-tuning on VGGFace2. These models achieve strong verification performance on benchmarks such as IJB-B and include variants with lower-dimensional embeddings for compact feature representation. The project also includes preprocessing tools, face detection scripts, and etc.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 4
    MATLAB Deep Learning Model Hub

    MATLAB Deep Learning Model Hub

    Discover pretrained models for deep learning in MATLAB

    Discover pre-trained models for deep learning in MATLAB. Pretrained image classification networks have already learned to extract powerful and informative features from natural images. Use them as a starting point to learn a new task using transfer learning. Inputs are RGB images, the output is the predicted label and score.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    MTCNN Face Detection Alignment

    MTCNN Face Detection Alignment

    Joint Face Detection and Alignment

    MTCNN_face_detection_alignment is an implementation of the “Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks” algorithm. The algorithm uses a cascade of three convolutional networks (P-Net, R-Net, O-Net) to jointly detect faces (bounding boxes) and align facial landmarks in a coarse-to-fine manner, leveraging multi-task learning. Non-maximum suppression and bounding box regression at each stage. The repository includes Caffe / MATLAB code, support scripts, and instructions for dependencies. Non-maximum suppression and bounding box regression at each stage. Online hard sample mining to improve training robustness.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    Machine Learning Homework

    Machine Learning Homework

    Matlab Coding homework for Machine Learning

    The Machine-Learning-homework repository by user “Ayatans” is a collection of MATLAB code intended to solve or illustrate assignments in machine learning courses. It includes implementations of standard machine learning algorithms (such as regression, classification, etc.), scripts for data loading and preprocessing, and evaluation routines (e.g. accuracy, error metrics). Because it is structured as homework or practice material, the code is likely intended more for didactic use than for production deployment. It may contain comments, example datasets, and perhaps test scripts. The repository does not seem to be heavily maintained as a software project; rather, it functions as a library of solved problems and educational examples. The project is useful if you want working MATLAB examples of classic ML techniques, to study, adapt, or compare with your own implementations.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    Stanford Machine Learning Course

    Stanford Machine Learning Course

    machine learning course programming exercise

    The Stanford Machine Learning Course Exercises repository contains programming assignments from the well-known Stanford Machine Learning online course. It includes implementations of a variety of fundamental algorithms using Python and MATLAB/Octave. The repository covers a broad set of topics such as linear regression, logistic regression, neural networks, clustering, support vector machines, and recommender systems. Each folder corresponds to a specific algorithm or concept, making it easy for learners to navigate and practice. The exercises serve as practical, hands-on reinforcement of theoretical concepts taught in the course. This collection is valuable for students and practitioners who want to strengthen their skills in machine learning through coding exercises.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    BPL

    BPL

    Bayesian Program Learning model for one-shot learning

    BPL (Bayesian Program Learning) is a MATLAB implementation of the Bayesian Program Learning framework for one-shot concept learning (especially on handwritten characters). The approach treats each concept (e.g. a character) as being generated by a probabilistic program (motor primitives, strokes, spatial relationships), and inference proceeds by fitting those generative programs to a single example, generalizing to new examples, and generating new exemplars. The repository contains code for parsing stroke sequences, fitting motor programs, exemplar generation, classification, re-fitting, and demonstration scripts.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Coursera Machine Learning

    Coursera Machine Learning

    Coursera Machine Learning By Prof. Andrew Ng

    CourseraMachineLearning is a personal collection of resources, notes, and programming exercises from Andrew Ng’s popular Machine Learning course on Coursera. It consolidates lecture references, programming tutorials, test cases, and supporting materials into one repository for easier review and practice. The project highlights fundamental machine learning concepts such as hypothesis functions, cost functions, gradient descent, bias-variance tradeoffs, and regression models. It also organizes week-by-week course schedules with links to exercises, lecture notes, and additional resources. Alongside the official coursework, the repository includes supplemental explanations, code snippets, and references to recommended textbooks and external materials. By gathering course-related resources into a single space, this project acts as a practical study companion for learners revisiting or supplementing the original course.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 10
    DeepLearnToolbox

    DeepLearnToolbox

    Matlab/Octave toolbox for deep learning

    DeepLearnToolbox is a MATLAB / Octave toolbox for prototyping deep learning models. It provides implementations of feedforward neural networks, convolutional neural networks (CNNs), deep belief networks (DBNs), stacked autoencoders, convolutional autoencoders, and more. The toolbox includes example scripts for each method, enabling users to quickly experiment with architectures, training, and inference workflows. Although it's been flagged as deprecated and no longer actively maintained, it is still used for educational and prototyping purposes. Deep belief networks (DBN) and restricted Boltzmann machines (RBM). Example scripts demonstrating usage.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    DnCNN

    DnCNN

    Beyond a Gaussian Denoiser: Residual Learning of Deep CNN

    This repository implements DnCNN (“Deep CNN Denoiser”) from the paper “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising”. DnCNN is a feedforward convolutional neural network that learns to predict the residual noise (i.e. noise map) from a noisy input image, which is then subtracted to yield a clean image. This formulation allows efficient denoising, supports blind Gaussian noise (i.e. unknown noise levels), and can be extended to related tasks like image super-resolution or JPEG deblocking in some variants. The repository includes training code (using MatConvNet / MATLAB), demo scripts, pretrained models, and evaluation routines. Single model handling multiple noise levels.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Edges

    Edges

    Structured Edge Detection Toolbox

    Structured Edge Detection (Edges) is a MATLAB toolbox implementing the structured forests method for fast and accurate edge detection (up to ~60 fps in many settings). The toolbox also includes the Edge Boxes object proposal method, fast superpixel generation, and utilities for training, evaluation, and integration with vision pipelines. High performance (frames per second performance depending on settings). Integration with MATLAB and compatibility with external vision pipelines. Fast edge detection using structured forests (predict structured edge maps).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Exposure Correction
    Exposure_Correction is a research project that provides the implementation for the paper Learning Multi-Scale Photo Exposure Correction (CVPR 2021). The repository focuses on correcting poorly exposed photographs, handling both underexposure and overexposure using a deep learning approach. The method employs a multi-scale framework that learns to enhance images by adjusting exposure levels across different spatial resolutions. This allows the model to preserve fine details while correcting global lighting inconsistencies. The repository includes pre-trained models, datasets, and training/testing code to enable reproducibility and experimentation. By leveraging this framework, researchers and developers can apply exposure correction to a wide range of natural images, improving visual quality without manual editing. The project serves both as a research reference and a practical tool for computational photography and image enhancement.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Image Fusion

    Image Fusion

    Deep Learning-based Image Fusion: A Survey

    This repository is a survey / code collection centered on deep learning–based image fusion (e.g. fusing infrared + visible light images, multi-modal fusion) methods. It catalogs many fusion algorithms (e.g. DenseFuse, FusionGAN, NestFuse, etc.), links to code implementations, and describes evaluation metrics. The repository includes a “General Evaluation Metric” subfolder containing objective fusion metrics. It is not a single monolithic tool, but rather a curated reference and aggregation of methods, code and performance comparisons in the domain of image fusion. Survey style description of method taxonomy, architectures, loss types. Compilation of many state-of-the-art image fusion methods (infrared + visible, multi-focus, multi-exposure). Survey style description of method taxonomy, architectures, loss types.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    MatlabFunc

    MatlabFunc

    Matlab codes for feature learning

    MatlabFunc is a collection of MATLAB functions developed by the ZJULearning group to support various tasks in computer vision, machine learning, and numerical computation. The repository brings together a wide range of utility scripts, algorithms, and implementations that serve as building blocks for research and development. These functions cover areas such as matrix operations, optimization, data processing, and visualization, making them broadly applicable across different research domains. The project is intended to provide reusable and adaptable MATLAB code that can save time for researchers and students working on experimental or applied projects. By consolidating these tools in one place, MatlabFunc serves as a practical reference and toolkit for both academic and engineering purposes. Contributions and improvements from the community are encouraged, allowing the repository to grow into a richer resource over time.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    Tiny

    Tiny

    Tiny Face Detector, CVPR 2017

    This repository implements the Tiny Face Detector (from Hu & Ramanan, CVPR 2017) in MATLAB (using MatConvNet). The method is designed to detect tiny faces (i.e. very small-scale faces) by combining multi-scale context modeling, foveal descriptors, and scale enumeration strategies. It provides training/testing scripts, a demo (tiny_face_detector.m), model loading, evaluation on WIDER FACE, and supporting utilities (e.g. cnn_widerface_eval.m). The code depends on MatConvNet, which must be compiled (with GPU / CUDA / cuDNN support) for full performance. Pretrained model provided (ResNet101-based, plus alternatives). Demo and evaluation scripts for benchmark datasets. Use of “foveal descriptors” to incorporate context for low-resolution faces. Pretrained model provided (ResNet101-based, plus alternatives).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    Activity Recognition

    Activity Recognition

    Resources about activity recognition

    This repository is a curated collection of resources, papers, code, and summaries relating to human activity recognition/behavior recognition. It is not a single integrated software package but rather a knowledge base organizing feature extraction methods, deep learning approaches, transfer learning strategies, datasets, and representative research in behavior recognition. The repository includes links to code in MATLAB, Python, summaries of algorithms, datasets, and relevant research papers. Feature extraction method summaries (e.g. motion, sensor, vision). Deep learning for activity recognition references.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    CAM

    CAM

    Class Activation Mapping

    This repository implements Class Activation Mapping (CAM), a technique to expose the implicit attention of convolutional neural networks by generating heatmaps that highlight the most discriminative image regions influencing a network’s class prediction. The method involves modifying a CNN model slightly (e.g., using global average pooling before the final layer) to produce a weighted combination of feature maps as the class activation map. Integration with existing CNNs (with light modifications). Sample scripts/examples using standard architectures. The repo provides example code and instructions for applying CAM to existing CNN architectures. Visualization of discriminative regions per class.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    CFNet

    CFNet

    Training a Correlation Filter end-to-end allows lightweight networks

    CFNet is the official implementation of End-to-end representation learning for Correlation Filter based tracking (CVPR 2017) by Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H. S. Torr. The framework combines correlation filters with deep convolutional neural networks to create an efficient and accurate visual object tracker. Unlike traditional correlation filter trackers that rely on hand-crafted features, CFNet learns feature representations directly from data in an end-to-end fashion. This allows the tracker to be both computationally efficient and robust to appearance changes such as scale, rotation, and illumination variations. The repository provides pre-trained models, training code, and testing scripts for evaluating the tracker on standard benchmarks. By bridging the gap between correlation filters and deep learning, CFNet provides a foundation for further research in real-time object tracking.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    ConvNet Burden

    ConvNet Burden

    Memory consumption and FLOP count estimates for convnets

    convnet-burden is a MATLAB toolbox / script collection estimating computational cost (FLOPs) and memory consumption of various convolutional neural network architectures. It lets users compute approximate burdens (in FLOPs, memory) for standard image classification CNN models (e.g. ResNet, VGG) based on network definitions. The tool helps researchers compare the computational efficiency of architectures or quantify resource needs. Estimation of memory consumption (e.g. feature map sizes, parameter storage). Support for multiple network definitions/architectures. Estimation of memory consumption (e.g. feature map sizes, parameter storage). Estimation of FLOPs (floating point operations) for CNN architectures.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Detect and Track

    Detect and Track

    Code release for "Detect to Track and Track to Detect", ICCV 2017

    Detect-Track is the official implementation of the ICCV 2017 paper Detect to Track and Track to Detect by Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. The framework unifies object detection and tracking into a single pipeline, allowing detection to support tracking and tracking to enhance detection performance. Built upon a modified version of R-FCN, the code provides implementations using backbone networks such as ResNet-50, ResNet-101, ResNeXt-101, and Inception-v4, with results demonstrating state-of-the-art accuracy on the ImageNet VID dataset. The repository includes MATLAB-based training and testing scripts, along with pre-trained models and pre-computed region proposals for reproducibility. Multiple testing configurations are available, including multi-frame input and enhanced versions that refine tracking boxes and integrate detection confidence across frames.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    LRSLibrary

    LRSLibrary

    Low-Rank and Sparse Tools for Background Modeling and Subtraction

    LRSLibrary is a MATLAB library offering a broad collection of low-rank plus sparse decomposition algorithms, primarily aimed at background/foreground modeling from videos (background subtraction) and related computer vision tasks. Compatibility across MATLAB versions (tested in R2014–R2017) The library includes matrix and tensor methods (over 100 algorithms) and has been tested across MATLAB versions from R2014 onward. The algorithms can also be adapted to other computer vision or machine learning problems beyond video. Large algorithm collection: > 100 matrix- and tensor-based low-rank + sparse methods. Open-source license, documentation and references included.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    Large Language Models (LLMs)

    Large Language Models (LLMs)

    Connect MATLAB to LLM APIs, including OpenAI® Chat Completions

    This repository enables MATLAB to connect with large language models (LLMs) such as OpenAI's ChatGPT, DALL-E, Azure OpenAI, and Ollama, integrating their natural language processing and image generation capabilities directly within MATLAB environments. It facilitates creating chatbots, summarizing text, and image generation, among other tasks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    MatlabMachine

    MatlabMachine

    Machine learning algorithms

    Matlab-Machine is a comprehensive collection of machine learning algorithms implemented in MATLAB. It includes both basic and advanced techniques for classification, regression, clustering, and dimensionality reduction. Designed for educational and research purposes, the repository provides clear implementations that help users understand core ML concepts.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    OpenCE

    OpenCE

    Contrast Enhancement Techniques for low-light images

    OpenCE is an open source implementation of the paper Cascaded Pyramid Network for Multi-Person Pose Estimation (CVPR 2018) by Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang Yu, and Jian Sun. The framework provides a complete training and evaluation pipeline for human pose estimation using a cascaded pyramid network (CPN). OpenCE leverages a feature pyramid structure combined with a refinement stage to improve keypoint detection accuracy across multiple scales, particularly for challenging poses in crowded scenes. The repository includes training scripts, pretrained models, and testing code, allowing users to reproduce results reported in the paper. It supports standard human pose estimation benchmarks such as COCO, with configurations optimized for accuracy and efficiency. As an open resource, OpenCE offers researchers and practitioners a strong baseline for pose estimation and a foundation for extending CPN-based methods.
    Downloads: 2 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.