Open Source MATLAB Artificial Intelligence Software

MATLAB Artificial Intelligence Software

View 12713 business solutions

Browse free open source MATLAB Artificial Intelligence Software and projects below. Use the toggles on the left to filter open source MATLAB Artificial Intelligence Software by OS, license, language, programming language, and project status.

  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads: http://arma.sourceforge.net/download.html * Documentation: http://arma.sourceforge.net/docs.html * Bug reports: http://arma.sourceforge.net/faq.html * Git repo: https://gitlab.com/conradsnicta/armadillo-code
    Leader badge
    Downloads: 2,220 This Week
    Last Update:
    See Project
  • 2
    VGGFace2

    VGGFace2

    VGGFace2 Dataset for Face Recognition

    VGGFace2 is a large-scale face recognition dataset developed to support research on facial recognition across variations in pose, age, illumination, and identity. It consists of 3.31 million images covering 9,131 subjects, with an average of over 360 images per subject. The dataset was collected from Google Image Search, ensuring a wide diversity in ethnicity, profession, and real-world conditions. It is split into a training set with 8,631 identities and a test set with 500 identities, making it suitable for benchmarking and large-scale model training. Alongside the dataset, the repository provides pre-trained models based on ResNet-50 and SE-ResNet-50 architectures, trained with both MS-Celeb-1M pretraining and fine-tuning on VGGFace2. These models achieve strong verification performance on benchmarks such as IJB-B and include variants with lower-dimensional embeddings for compact feature representation. The project also includes preprocessing tools, face detection scripts, and etc.
    Downloads: 32 This Week
    Last Update:
    See Project
  • 3
    Coursera Machine Learning

    Coursera Machine Learning

    Coursera Machine Learning By Prof. Andrew Ng

    CourseraMachineLearning is a personal collection of resources, notes, and programming exercises from Andrew Ng’s popular Machine Learning course on Coursera. It consolidates lecture references, programming tutorials, test cases, and supporting materials into one repository for easier review and practice. The project highlights fundamental machine learning concepts such as hypothesis functions, cost functions, gradient descent, bias-variance tradeoffs, and regression models. It also organizes week-by-week course schedules with links to exercises, lecture notes, and additional resources. Alongside the official coursework, the repository includes supplemental explanations, code snippets, and references to recommended textbooks and external materials. By gathering course-related resources into a single space, this project acts as a practical study companion for learners revisiting or supplementing the original course.
    Downloads: 25 This Week
    Last Update:
    See Project
  • 4

    OpenFace

    A state-of-the-art facial behavior analysis toolkit

    OpenFace is an advanced facial behavior analysis toolkit intended for computer vision and machine learning researchers, those in the affective computing community, and those who are simply interested in creating interactive applications based on facial behavior analysis. The OpenFace toolkit is capable of performing several complex facial analysis tasks, including facial landmark detection, eye-gaze estimation, head pose estimation and facial action unit recognition. OpenFace is able to deliver state-of-the-art results in all of these mentioned tasks. OpenFace is available for Windows, Ubuntu and macOS installations. It is capable of real-time performance and does not need to run on any specialist hardware, a simple webcam will suffice.
    Downloads: 23 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    CFNet

    CFNet

    Training a Correlation Filter end-to-end allows lightweight networks

    CFNet is the official implementation of End-to-end representation learning for Correlation Filter based tracking (CVPR 2017) by Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H. S. Torr. The framework combines correlation filters with deep convolutional neural networks to create an efficient and accurate visual object tracker. Unlike traditional correlation filter trackers that rely on hand-crafted features, CFNet learns feature representations directly from data in an end-to-end fashion. This allows the tracker to be both computationally efficient and robust to appearance changes such as scale, rotation, and illumination variations. The repository provides pre-trained models, training code, and testing scripts for evaluating the tracker on standard benchmarks. By bridging the gap between correlation filters and deep learning, CFNet provides a foundation for further research in real-time object tracking.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 6
    BPL

    BPL

    Bayesian Program Learning model for one-shot learning

    BPL (Bayesian Program Learning) is a MATLAB implementation of the Bayesian Program Learning framework for one-shot concept learning (especially on handwritten characters). The approach treats each concept (e.g. a character) as being generated by a probabilistic program (motor primitives, strokes, spatial relationships), and inference proceeds by fitting those generative programs to a single example, generalizing to new examples, and generating new exemplars. The repository contains code for parsing stroke sequences, fitting motor programs, exemplar generation, classification, re-fitting, and demonstration scripts.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Stanford Machine Learning Course

    Stanford Machine Learning Course

    machine learning course programming exercise

    The Stanford Machine Learning Course Exercises repository contains programming assignments from the well-known Stanford Machine Learning online course. It includes implementations of a variety of fundamental algorithms using Python and MATLAB/Octave. The repository covers a broad set of topics such as linear regression, logistic regression, neural networks, clustering, support vector machines, and recommender systems. Each folder corresponds to a specific algorithm or concept, making it easy for learners to navigate and practice. The exercises serve as practical, hands-on reinforcement of theoretical concepts taught in the course. This collection is valuable for students and practitioners who want to strengthen their skills in machine learning through coding exercises.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    Large Language Models (LLMs)

    Large Language Models (LLMs)

    Connect MATLAB to LLM APIs, including OpenAI® Chat Completions

    This repository enables MATLAB to connect with large language models (LLMs) such as OpenAI's ChatGPT, DALL-E, Azure OpenAI, and Ollama, integrating their natural language processing and image generation capabilities directly within MATLAB environments. It facilitates creating chatbots, summarizing text, and image generation, among other tasks.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    DnCNN

    DnCNN

    Beyond a Gaussian Denoiser: Residual Learning of Deep CNN

    This repository implements DnCNN (“Deep CNN Denoiser”) from the paper “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising”. DnCNN is a feedforward convolutional neural network that learns to predict the residual noise (i.e. noise map) from a noisy input image, which is then subtracted to yield a clean image. This formulation allows efficient denoising, supports blind Gaussian noise (i.e. unknown noise levels), and can be extended to related tasks like image super-resolution or JPEG deblocking in some variants. The repository includes training code (using MatConvNet / MATLAB), demo scripts, pretrained models, and evaluation routines. Single model handling multiple noise levels.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 10
    DeepLearnToolbox

    DeepLearnToolbox

    Matlab/Octave toolbox for deep learning

    DeepLearnToolbox is a MATLAB / Octave toolbox for prototyping deep learning models. It provides implementations of feedforward neural networks, convolutional neural networks (CNNs), deep belief networks (DBNs), stacked autoencoders, convolutional autoencoders, and more. The toolbox includes example scripts for each method, enabling users to quickly experiment with architectures, training, and inference workflows. Although it's been flagged as deprecated and no longer actively maintained, it is still used for educational and prototyping purposes. Deep belief networks (DBN) and restricted Boltzmann machines (RBM). Example scripts demonstrating usage.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    MatlabFunc

    MatlabFunc

    Matlab codes for feature learning

    MatlabFunc is a collection of MATLAB functions developed by the ZJULearning group to support various tasks in computer vision, machine learning, and numerical computation. The repository brings together a wide range of utility scripts, algorithms, and implementations that serve as building blocks for research and development. These functions cover areas such as matrix operations, optimization, data processing, and visualization, making them broadly applicable across different research domains. The project is intended to provide reusable and adaptable MATLAB code that can save time for researchers and students working on experimental or applied projects. By consolidating these tools in one place, MatlabFunc serves as a practical reference and toolkit for both academic and engineering purposes. Contributions and improvements from the community are encouraged, allowing the repository to grow into a richer resource over time.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Activity Recognition

    Activity Recognition

    Resources about activity recognition

    This repository is a curated collection of resources, papers, code, and summaries relating to human activity recognition/behavior recognition. It is not a single integrated software package but rather a knowledge base organizing feature extraction methods, deep learning approaches, transfer learning strategies, datasets, and representative research in behavior recognition. The repository includes links to code in MATLAB, Python, summaries of algorithms, datasets, and relevant research papers. Feature extraction method summaries (e.g. motion, sensor, vision). Deep learning for activity recognition references.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    CAM

    CAM

    Class Activation Mapping

    This repository implements Class Activation Mapping (CAM), a technique to expose the implicit attention of convolutional neural networks by generating heatmaps that highlight the most discriminative image regions influencing a network’s class prediction. The method involves modifying a CNN model slightly (e.g., using global average pooling before the final layer) to produce a weighted combination of feature maps as the class activation map. Integration with existing CNNs (with light modifications). Sample scripts/examples using standard architectures. The repo provides example code and instructions for applying CAM to existing CNN architectures. Visualization of discriminative regions per class.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Detect and Track

    Detect and Track

    Code release for "Detect to Track and Track to Detect", ICCV 2017

    Detect-Track is the official implementation of the ICCV 2017 paper Detect to Track and Track to Detect by Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. The framework unifies object detection and tracking into a single pipeline, allowing detection to support tracking and tracking to enhance detection performance. Built upon a modified version of R-FCN, the code provides implementations using backbone networks such as ResNet-50, ResNet-101, ResNeXt-101, and Inception-v4, with results demonstrating state-of-the-art accuracy on the ImageNet VID dataset. The repository includes MATLAB-based training and testing scripts, along with pre-trained models and pre-computed region proposals for reproducibility. Multiple testing configurations are available, including multi-frame input and enhanced versions that refine tracking boxes and integrate detection confidence across frames.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    EEG Seizure Prediction

    EEG Seizure Prediction

    Seizure prediction from EEG data using machine learning

    The Kaggle-EEG project is a machine learning solution developed for seizure prediction from EEG data, achieving 3rd place in the Kaggle/University of Melbourne Seizure Prediction competition. The repository processes EEG data to predict seizures by training machine learning models, specifically using SVM (Support Vector Machine) and RUS Boosted Tree ensemble models. The framework processes EEG data into features, trains models, and outputs predictions, handling temporal data to ensure accuracy.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Exposure Correction

    Exposure Correction

    Learning multi-scale deep model correcting over- and under- exposed

    Exposure_Correction is a research project that provides the implementation for the paper Learning Multi-Scale Photo Exposure Correction (CVPR 2021). The repository focuses on correcting poorly exposed photographs, handling both underexposure and overexposure using a deep learning approach. The method employs a multi-scale framework that learns to enhance images by adjusting exposure levels across different spatial resolutions. This allows the model to preserve fine details while correcting global lighting inconsistencies. The repository includes pre-trained models, datasets, and training/testing code to enable reproducibility and experimentation. By leveraging this framework, researchers and developers can apply exposure correction to a wide range of natural images, improving visual quality without manual editing. The project serves both as a research reference and a practical tool for computational photography and image enhancement.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Image Fusion

    Image Fusion

    Deep Learning-based Image Fusion: A Survey

    This repository is a survey / code collection centered on deep learning–based image fusion (e.g. fusing infrared + visible light images, multi-modal fusion) methods. It catalogs many fusion algorithms (e.g. DenseFuse, FusionGAN, NestFuse, etc.), links to code implementations, and describes evaluation metrics. The repository includes a “General Evaluation Metric” subfolder containing objective fusion metrics. It is not a single monolithic tool, but rather a curated reference and aggregation of methods, code and performance comparisons in the domain of image fusion. Survey style description of method taxonomy, architectures, loss types. Compilation of many state-of-the-art image fusion methods (infrared + visible, multi-focus, multi-exposure). Survey style description of method taxonomy, architectures, loss types.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Mexopencv

    Mexopencv

    Collection and a development kit of matlab mex functions for OpenCV

    mexopencv is a collection of MEX functions that provide MATLAB bindings for OpenCV, the popular computer vision library. It enables MATLAB users to access nearly the full range of OpenCV’s C++ API directly from MATLAB, combining the ease of MATLAB scripting with the performance of OpenCV.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Netvlad

    Netvlad

    NetVLAD: CNN architecture for weakly supervised place recognition

    NetVLAD is a deep learning-based image descriptor framework developed by Relja Arandjelović for place recognition and image retrieval. It extends standard CNNs with a trainable VLAD (Vector of Locally Aggregated Descriptors) layer to create compact, robust global descriptors from image features. This implementation includes training code and pretrained models using the Pittsburgh and Tokyo datasets.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    OpenCE

    OpenCE

    Contrast Enhancement Techniques for low-light images

    OpenCE is an open source implementation of the paper Cascaded Pyramid Network for Multi-Person Pose Estimation (CVPR 2018) by Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang Yu, and Jian Sun. The framework provides a complete training and evaluation pipeline for human pose estimation using a cascaded pyramid network (CPN). OpenCE leverages a feature pyramid structure combined with a refinement stage to improve keypoint detection accuracy across multiple scales, particularly for challenging poses in crowded scenes. The repository includes training scripts, pretrained models, and testing code, allowing users to reproduce results reported in the paper. It supports standard human pose estimation benchmarks such as COCO, with configurations optimized for accuracy and efficiency. As an open resource, OpenCE offers researchers and practitioners a strong baseline for pose estimation and a foundation for extending CPN-based methods.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    OpenTLD

    OpenTLD

    OpenTLD is an open source library for real-time 2D tracking

    OpenTLD is an open source implementation of the TLD (Tracking-Learning-Detection) framework, designed for real-time 2D tracking of a single object in video sequences. Because it fuses tracking and detection, TLD can recover from occlusions, drift, or failures by using its detection mechanism to reacquire the object. In terms of usage, one typically initializes the tracker by providing a bounding box on the first frame, then calls a function like run_TLD to process a video and obtain bounding boxes over time. The system updates its internal models as frames are processed, and can re-detect the target when tracking fails. The algorithm’s performance is known to improve over time due to its online adaptation behavior. Because of its age and MATLAB dependencies, adopting it in modern C++ / real-time pipelines may require effort (e.g. rewriting or porting) or using more recent tracking libraries.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    R-FCN

    R-FCN

    R-FCN: Object Detection via Region-based Fully Convolutional Networks

    R-FCN (“Region-based Fully Convolutional Networks”) is an object detection framework that makes almost all computation fully convolutional and shared across the image, unlike prior region-based approaches (e.g. Faster R-CNN) which run per-region sub-networks. The repository provides an implementation (in Python) supporting end-to-end training and inference of R-FCN models on standard datasets. The authors propose position-sensitive score maps to reconcile the need for translation variance (in detection) and translation invariance (in classification). R-FCN is efficient (low per-region overhead) and competitive in accuracy (e.g. with ResNet backbones). Position-sensitive score maps for per-region classification without expensive per-region convs. Optional “deformable R-FCN” extension for improved performance.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Tiny

    Tiny

    Tiny Face Detector, CVPR 2017

    This repository implements the Tiny Face Detector (from Hu & Ramanan, CVPR 2017) in MATLAB (using MatConvNet). The method is designed to detect tiny faces (i.e. very small-scale faces) by combining multi-scale context modeling, foveal descriptors, and scale enumeration strategies. It provides training/testing scripts, a demo (tiny_face_detector.m), model loading, evaluation on WIDER FACE, and supporting utilities (e.g. cnn_widerface_eval.m). The code depends on MatConvNet, which must be compiled (with GPU / CUDA / cuDNN support) for full performance. Pretrained model provided (ResNet101-based, plus alternatives). Demo and evaluation scripts for benchmark datasets. Use of “foveal descriptors” to incorporate context for low-resolution faces. Pretrained model provided (ResNet101-based, plus alternatives).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    iRobot Create Simulator
    A MATLAB toolbox for simulating the movement of the iRobot Create. Contains multiple GUIs for creating maps and other input, showing the movement of the Create, and replaying a previously saved session.
    Leader badge
    Downloads: 14 This Week
    Last Update:
    See Project
  • 25
    The purpose of this program is to teach a computer to classify plants via their leaves. You just need to input the image of a leaf(acquired from scanner or camera), then the computer can tell you what kind of plant it is.
    Leader badge
    Downloads: 23 This Week
    Last Update:
    See Project