Open Source MATLAB Artificial Intelligence Software

MATLAB Artificial Intelligence Software

View 11987 business solutions

Browse free open source MATLAB Artificial Intelligence Software and projects below. Use the toggles on the left to filter open source MATLAB Artificial Intelligence Software by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads: http://arma.sourceforge.net/download.html * Documentation: http://arma.sourceforge.net/docs.html * Bug reports: http://arma.sourceforge.net/faq.html * Git repo: https://gitlab.com/conradsnicta/armadillo-code
    Leader badge
    Downloads: 2,991 This Week
    Last Update:
    See Project
  • 2

    OpenFace

    A state-of-the-art facial behavior analysis toolkit

    OpenFace is an advanced facial behavior analysis toolkit intended for computer vision and machine learning researchers, those in the affective computing community, and those who are simply interested in creating interactive applications based on facial behavior analysis. The OpenFace toolkit is capable of performing several complex facial analysis tasks, including facial landmark detection, eye-gaze estimation, head pose estimation and facial action unit recognition. OpenFace is able to deliver state-of-the-art results in all of these mentioned tasks. OpenFace is available for Windows, Ubuntu and macOS installations. It is capable of real-time performance and does not need to run on any specialist hardware, a simple webcam will suffice.
    Downloads: 23 This Week
    Last Update:
    See Project
  • 3
    VGGFace2

    VGGFace2

    VGGFace2 Dataset for Face Recognition

    VGGFace2 is a large-scale face recognition dataset developed to support research on facial recognition across variations in pose, age, illumination, and identity. It consists of 3.31 million images covering 9,131 subjects, with an average of over 360 images per subject. The dataset was collected from Google Image Search, ensuring a wide diversity in ethnicity, profession, and real-world conditions. It is split into a training set with 8,631 identities and a test set with 500 identities, making it suitable for benchmarking and large-scale model training. Alongside the dataset, the repository provides pre-trained models based on ResNet-50 and SE-ResNet-50 architectures, trained with both MS-Celeb-1M pretraining and fine-tuning on VGGFace2. These models achieve strong verification performance on benchmarks such as IJB-B and include variants with lower-dimensional embeddings for compact feature representation. The project also includes preprocessing tools, face detection scripts, and etc.
    Downloads: 20 This Week
    Last Update:
    See Project
  • 4
    Large Language Models (LLMs)

    Large Language Models (LLMs)

    Connect MATLAB to LLM APIs, including OpenAI® Chat Completions

    This repository enables MATLAB to connect with large language models (LLMs) such as OpenAI's ChatGPT, DALL-E, Azure OpenAI, and Ollama, integrating their natural language processing and image generation capabilities directly within MATLAB environments. It facilitates creating chatbots, summarizing text, and image generation, among other tasks.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Deliver trusted data with dbt Icon
    Deliver trusted data with dbt

    dbt Labs empowers data teams to build reliable, governed data pipelines—accelerating analytics and AI initiatives with speed and confidence.

    Data teams use dbt to codify business logic and make it accessible to the entire organization—for use in reporting, ML modeling, and operational workflows.
    Learn More
  • 5
    Coursera Machine Learning

    Coursera Machine Learning

    Coursera Machine Learning By Prof. Andrew Ng

    CourseraMachineLearning is a personal collection of resources, notes, and programming exercises from Andrew Ng’s popular Machine Learning course on Coursera. It consolidates lecture references, programming tutorials, test cases, and supporting materials into one repository for easier review and practice. The project highlights fundamental machine learning concepts such as hypothesis functions, cost functions, gradient descent, bias-variance tradeoffs, and regression models. It also organizes week-by-week course schedules with links to exercises, lecture notes, and additional resources. Alongside the official coursework, the repository includes supplemental explanations, code snippets, and references to recommended textbooks and external materials. By gathering course-related resources into a single space, this project acts as a practical study companion for learners revisiting or supplementing the original course.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    VRN

    VRN

    Code for "Large Pose 3D Face Reconstruction

    The VRN (Volumetric Regression Network) repository implements the “Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression” method. Instead of explicitly fitting a 3D model via landmark estimation and deformation, VRN treats the reconstruction task as volumetric segmentation: it learns a CNN to regress a 3D volume aligned to the input image, and then extracts a mesh via isosurface from that volume. The network is unguided (no 2D landmarks as intermediate). The mesh surfaces can be textured (in MATLAB branch) and colored. Docker container provided for easy CPU deployment.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Exposure Correction

    Exposure Correction

    Learning multi-scale deep model correcting over- and under- exposed

    Exposure_Correction is a research project that provides the implementation for the paper Learning Multi-Scale Photo Exposure Correction (CVPR 2021). The repository focuses on correcting poorly exposed photographs, handling both underexposure and overexposure using a deep learning approach. The method employs a multi-scale framework that learns to enhance images by adjusting exposure levels across different spatial resolutions. This allows the model to preserve fine details while correcting global lighting inconsistencies. The repository includes pre-trained models, datasets, and training/testing code to enable reproducibility and experimentation. By leveraging this framework, researchers and developers can apply exposure correction to a wide range of natural images, improving visual quality without manual editing. The project serves both as a research reference and a practical tool for computational photography and image enhancement.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Mexopencv

    Mexopencv

    Collection and a development kit of matlab mex functions for OpenCV

    mexopencv is a collection of MEX functions that provide MATLAB bindings for OpenCV, the popular computer vision library. It enables MATLAB users to access nearly the full range of OpenCV’s C++ API directly from MATLAB, combining the ease of MATLAB scripting with the performance of OpenCV.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Netvlad

    Netvlad

    NetVLAD: CNN architecture for weakly supervised place recognition

    NetVLAD is a deep learning-based image descriptor framework developed by Relja Arandjelović for place recognition and image retrieval. It extends standard CNNs with a trainable VLAD (Vector of Locally Aggregated Descriptors) layer to create compact, robust global descriptors from image features. This implementation includes training code and pretrained models using the Pittsburgh and Tokyo datasets.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Say goodbye to broken revenue funnels and poor customer experiences Icon
    Say goodbye to broken revenue funnels and poor customer experiences

    Connect and coordinate your data, signals, tools, and people at every step of the customer journey.

    LeanData is a Demand Management solution that supports all go-to-market strategies such as account-based sales development, geo-based territories, and more. LeanData features a visual, intuitive workflow native to Salesforce that enables users to view their entire lead flow in one interface. LeanData allows users to access the drag-and-drop feature to route their leads. LeanData also features an algorithms match that uses multiple fields in Salesforce.
    Learn More
  • 10
    Robust Tube MPC

    Robust Tube MPC

    Example implementation for robust model predictive control using tube

    robust-tube-mpc is a MATLAB implementation of robust tube-based Model Predictive Control (MPC). The framework provides tools to design and simulate controllers that maintain stability and constraint satisfaction in the presence of bounded disturbances. Tube-based MPC achieves robustness by combining a nominal trajectory planner with an error feedback controller that keeps the actual system state within a "tube" around the nominal trajectory. This repository includes example scripts and implementations demonstrating how to apply the method to control problems. It is particularly useful for researchers, students, and engineers exploring robust control strategies in uncertain environments. By offering a structured implementation, robust-tube-mpc makes it easier to study and extend advanced MPC techniques for real-world applications.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    The purpose of this program is to teach a computer to classify plants via their leaves. You just need to input the image of a leaf(acquired from scanner or camera), then the computer can tell you what kind of plant it is.
    Leader badge
    Downloads: 32 This Week
    Last Update:
    See Project
  • 12
    ECO

    ECO

    Matlab implementation of the ECO tracker

    ECO (Efficient Convolution Operators for Tracking) is a high-performance object tracking algorithm developed by Martin Danelljan and collaborators. It is based on discriminative correlation filters and designed to handle appearance changes, occlusions, and scale variations in visual object tracking tasks. The code provides a MATLAB implementation of the ECO and ECO-HC (high-speed) variants and was one of the top performers on multiple visual tracking benchmarks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    HashingBaselineForImageRetrieval

    HashingBaselineForImageRetrieval

    Various hashing methods for image retrieval and serves as the baseline

    This repository provides baseline implementations of deep supervised hashing methods for image retrieval tasks using PyTorch. It includes clean, minimal code for several hashing algorithms designed to map images into compact binary codes while preserving similarity in feature space, enabling fast and scalable retrieval from large image datasets.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Image Fusion

    Image Fusion

    Deep Learning-based Image Fusion: A Survey

    This repository is a survey / code collection centered on deep learning–based image fusion (e.g. fusing infrared + visible light images, multi-modal fusion) methods. It catalogs many fusion algorithms (e.g. DenseFuse, FusionGAN, NestFuse, etc.), links to code implementations, and describes evaluation metrics. The repository includes a “General Evaluation Metric” subfolder containing objective fusion metrics. It is not a single monolithic tool, but rather a curated reference and aggregation of methods, code and performance comparisons in the domain of image fusion. Survey style description of method taxonomy, architectures, loss types. Compilation of many state-of-the-art image fusion methods (infrared + visible, multi-focus, multi-exposure). Survey style description of method taxonomy, architectures, loss types.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    MatlabMachine

    MatlabMachine

    Machine learning algorithms

    Matlab-Machine is a comprehensive collection of machine learning algorithms implemented in MATLAB. It includes both basic and advanced techniques for classification, regression, clustering, and dimensionality reduction. Designed for educational and research purposes, the repository provides clear implementations that help users understand core ML concepts.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Stanford Machine Learning Course

    Stanford Machine Learning Course

    machine learning course programming exercise

    The Stanford Machine Learning Course Exercises repository contains programming assignments from the well-known Stanford Machine Learning online course. It includes implementations of a variety of fundamental algorithms using Python and MATLAB/Octave. The repository covers a broad set of topics such as linear regression, logistic regression, neural networks, clustering, support vector machines, and recommender systems. Each folder corresponds to a specific algorithm or concept, making it easy for learners to navigate and practice. The exercises serve as practical, hands-on reinforcement of theoretical concepts taught in the course. This collection is valuable for students and practitioners who want to strengthen their skills in machine learning through coding exercises.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    CometAnalyser

    CometAnalyser

    CometAnalyser, for quantitative comet assay analysis.

    Description: Comet assay provides an easy solution to estimate DNA damage in single cells through microscopy assessment. To obtain reproducible and reliable quantitative data, we developed an easy-to-use tool named CometAnalyser. CometAnalyser is an open-source deep-learning tool designed for the analysis of both fluorescent and silver-stained wide-field microscopy images. Once the comets are segmented and classified, several intensity/morphological features are automatically exported as a spreadsheet file. Video Tutorial: CometAnalyser is written in MATLAB. It works with Windows, Macintosh, and UNIX-based systems. Please, download the sample datasets and test it watching the video tutorial to understand how it works: https://www.youtube.com/watch?v=vh2VFnMw50A Contacts: filippo.piccinini85@gmail.com beleonattila@gmail.com
    Downloads: 24 This Week
    Last Update:
    See Project
  • 18
    Eventer

    Eventer

    Rapid, unbiased, reproducible analysis of synaptic events

    Eventer is a programme designed for the detection of spontaneous synaptic events measured by electrophysiology or imaging. The software combines deconvolution for detection, and variable length template matching approaches for screening out false positive events. Eventer also includes a machine learning-based approach allowing users to train a model to implement their ‘expert’ selection criteria across data sets without bias. Sharing models allows users to implement consistent analysis procedures. The software is coded in MATLAB, but has been compiled as standalone applications for Windows, Mac and Linux. Please visit the official Eventer website for more info https://eventerneuro.netlify.app/ While the paper is in preparation, please cite as; Winchester, G., Liu, S., Steele, O.G., Aziz, W. and Penn, A.C. (2020) Eventer. Software for the detection of spontaneous synaptic events measured by electrophysiology or imaging. http://doi.org/10.5281/zenodo.3991676
    Downloads: 13 This Week
    Last Update:
    See Project
  • 19
    SmartWeld

    SmartWeld

    Weld Optimization for Automatic Welding

    Science based weld software to develop optimal automatic weld procedures. SmartWeld is a PC based tool for designers, engineers, and technicians to aid in selecting, optimizing, and configuring automated welding processes.
    Leader badge
    Downloads: 14 This Week
    Last Update:
    See Project
  • 20
    Source code from the Research Institute for Signals, Systems and Computational Intelligence http://fich.unl.edu.ar/sinc
    Leader badge
    Downloads: 12 This Week
    Last Update:
    See Project
  • 21
    mTRF-Toolbox

    mTRF-Toolbox

    A MATLAB package for modelling multivariate stimulus-response data

    mTRF-Toolbox is a MATLAB package for modelling multivariate stimulus-response data, suitable for neurophysiological data such as MEG, EEG, sEEG, ECoG and EMG. It can be used to model the functional relationship between neuronal populations and dynamic sensory inputs such as natural scenes and sounds, or build neural decoders for reconstructing stimulus features and developing real-time applications such as brain-computer interfaces (BCIs). Toolbox Paper: http://dx.doi.org/10.3389/fnhum.2016.00604 Methods Paper: https://doi.org/10.3389/fnins.2021.705621
    Downloads: 11 This Week
    Last Update:
    See Project
  • 22
    QASE is a Java-based API designed to provide all the functionality needed to create game agents in Quake 2. Powerful enough to facilitate high-end research, it is also suitable for undergrad courses geared towards classic AI and agent-based systems.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 23

    JAABA

    The Janelia Automated Animal Behavior Annotator

    The Janelia Automatic Animal Behavior Annotator (JAABA) is a machine learning-based system that enables researchers to automatically compute interpretable, quantitative statistics describing video of behaving animals. Through our system, users encode their intuition about the structure of behavior by labeling the behavior of the animal, e.g. walking, grooming, or following, in a small set of video frames. JAABA uses machine learning techniques to convert these manual labels into behavior detectors that can then be used to automatically classify the behaviors of animals in large data sets with high throughput. JAABA combines an intuitive graphical user interface, a fast and powerful machine learning algorithm, and visualizations of the classifier into an interactive, usable system for creating automatic behavior detectors. Documentation is available at: http://jaaba.sourceforge.net/
    Leader badge
    Downloads: 5 This Week
    Last Update:
    See Project
  • 24
    This is a Matlab software package for single molecule FRET data analysis.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 25
    MPT is a toolbox that supplies cross-platform libraries for real-time perception primitives, including face detection, eye detection, blink detection, and color tracking.
    Downloads: 3 This Week
    Last Update:
    See Project