Showing 560 open source projects for "python programming language"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Secure User Management, Made Simple | Frontegg Icon
    Secure User Management, Made Simple | Frontegg

    Get 7,500 MAUs, 50 tenants, and 5 SSOs free – integrated into your app with just a few lines of code.

    Frontegg powers modern businesses with a user management platform that’s fast to deploy and built to scale. Embed SSO, multi-tenancy, and a customer-facing admin portal using robust SDKs and APIs – no complex setup required. Designed for the Product-Led Growth era, it simplifies setup, secures your users, and frees your team to innovate. From startups to enterprises, Frontegg delivers enterprise-grade tools at zero cost to start. Kick off today.
    Start for Free
  • 1
    Cherche

    Cherche

    Neural Search

    Cherche allows the creation of efficient neural search pipelines using retrievers and pre-trained language models as rankers. Cherche's main strength is its ability to build diverse and end-to-end pipelines from lexical matching, semantic matching, and collaborative filtering-based models. Cherche provides modules dedicated to summarization and question answering. These modules are compatible with Hugging Face's pre-trained models and fully integrated into neural search pipelines. Search...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    SGLang

    SGLang

    SGLang is a fast serving framework for large language models

    SGLang is a fast serving framework for large language models and vision language models. It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Pyreft

    Pyreft

    ReFT: Representation Finetuning for Language Models

    PyreFT is a tool by Stanford NLP for fine-tuning transformer models with an emphasis on efficient, resource-conserving training and customizability for NLP tasks.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    Quark Agent

    Quark Agent

    Quark Agent - Your AI-powered Android APK Analyst

    With Quark Agent, you can perform analyses using only natural language. It creates Quark Script code following your ideas and adjusts the code promptly as you provide feedback.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Sales CRM and Pipeline Management Software | Pipedrive Icon
    Sales CRM and Pipeline Management Software | Pipedrive

    The easy and effective CRM for closing deals

    Pipedrive’s simple interface empowers salespeople to streamline workflows and unite sales tasks in one workspace. Unlock instant sales insights with Pipedrive’s visual sales pipeline and fine-tune your strategy with robust reporting features and a personalized AI Sales Assistant.
    Try it for free
  • 5
    BetaML.jl

    BetaML.jl

    Beta Machine Learning Toolkit

    The Beta Machine Learning Toolkit is a package including many algorithms and utilities to implement machine learning workflows in Julia, Python, R and any other language with a Julia binding. All models are implemented entirely in Julia and are hosted in the repository itself (i.e. they are not wrapper to third-party models). If your favorite option or model is missing, you can try to implement it yourself and open a pull request to share it (see the section Contribute below) or request its...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    ... the activities of annotation, which produces structured data; ready to be consumed by a machine learning model. Annotation is required because raw media is considered to be unstructured and not usable without it. That’s why training data is required for many modern machine learning use cases including computer vision, natural language processing and speech recognition.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    Datasets is a library for easily accessing and sharing datasets, and evaluation metrics for Natural Language Processing (NLP), computer vision, and audio tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep integration...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    Open Interface

    Open Interface

    Control Any Computer Using LLMs

    Open Interface is a cross-platform application that allows users to control their computers using large language models (LLMs). By sending user requests to an LLM backend, it determines the necessary steps and executes them by simulating keyboard and mouse inputs. The system can adjust its actions based on real-time feedback, providing a self-driving computer experience.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    LitGPT

    LitGPT

    20+ high-performance LLMs with recipes to pretrain, finetune at scale

    LitGPT is a collection of over 20 high-performance large language models (LLMs) accompanied by recipes to pretrain, finetune, and deploy them at scale. It provides implementations without abstractions, making it beginner-friendly while offering advanced features like flash attention and support for various precision levels. LitGPT is designed to run efficiently across multiple GPUs or TPUs, catering to both small-scale and large-scale deployments.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Axolotl

    Axolotl

    Go ahead and axolotl questions

    Axolotl is a powerful and flexible framework for fine-tuning large language models on custom datasets. Built for researchers and developers, Axolotl simplifies the process of adapting LLMs for specific tasks, including chat, code generation, and instruction following. It supports a wide variety of model architectures and offers out-of-the-box optimization strategies for efficient training.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 11
    LLaVA

    LLaVA

    Visual Instruction Tuning: Large Language-and-Vision Assistant

    Visual instruction tuning towards large language and vision models with GPT-4 level capabilities.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Aviary

    Aviary

    Ray Aviary - evaluate multiple LLMs easily

    Aviary is an LLM serving solution that makes it easy to deploy and manage a variety of open source LLMs. Providing an extensive suite of pre-configured open source LLMs, with defaults that work out of the box. Supporting Transformer models hosted on Hugging Face Hub or present on local disk. Aviary has native support for autoscaling and multi-node deployments thanks to Ray and Ray Serve. Aviary can scale to zero and create new model replicas (each composed of multiple GPU workers) in...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    Obsei

    Obsei

    Obsei is a low code AI powered automation tool

    Obsei is an automated no-code/low-code AI-powered text observation and analysis framework, designed for extracting insights from unstructured text data such as social media, reviews, and logs.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Data-Juicer

    Data-Juicer

    Data processing for and with foundation models

    Data-Juicer is an open-source data processing and augmentation framework designed to enhance the quality and diversity of datasets for machine learning tasks. It includes a modular pipeline for scalable data transformation.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    LLM CLI

    LLM CLI

    Access large language models from the command-line

    A CLI utility and Python library for interacting with Large Language Models, both via remote APIs and models that can be installed and run on your own machine.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    GraphRAG

    GraphRAG

    A modular graph-based Retrieval-Augmented Generation (RAG) system

    The GraphRAG project is a data pipeline and transformation suite that is designed to extract meaningful, structured data from unstructured text using the power of LLMs.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    PandasAI

    PandasAI

    PandasAI is a Python library that integrates generative AI

    PandasAI is a Python library that adds Generative AI capabilities to pandas, the popular data analysis and manipulation tool. It is designed to be used in conjunction with pandas, and is not a replacement for it. PandasAI makes pandas (and all the most used data analyst libraries) conversational, allowing you to ask questions to your data in natural language. For example, you can ask PandasAI to find all the rows in a DataFrame where the value of a column is greater than 5, and it will return...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    zvt

    zvt

    Modular quant framework

    For practical trading, a complex algorithm is fragile, a complex algorithm building on a complex facility is more fragile, complex algorithm building on a complex facility by a complex team is more and more fragile. zvt wants to provide a simple facility for building a straightforward algorithm. Technologies come and technologies go, but market insight is forever. Your world is built by core concepts inside you, so it’s you. zvt world is built by core concepts inside the market, so it’s zvt....
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    fklearn

    fklearn

    Functional Machine Learning

    fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 20
    PaLM + RLHF - Pytorch

    PaLM + RLHF - Pytorch

    Implementation of RLHF (Reinforcement Learning with Human Feedback)

    PaLM-rlhf-pytorch is a PyTorch implementation of Pathways Language Model (PaLM) with Reinforcement Learning from Human Feedback (RLHF). It is designed for fine-tuning large-scale language models with human preference alignment, similar to OpenAI’s approach for training models like ChatGPT.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    PEFT

    PEFT

    State-of-the-art Parameter-Efficient Fine-Tuning

    Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's parameters. Fine-tuning large-scale PLMs is often prohibitively costly. In this regard, PEFT methods only fine-tune a small number of (extra) model parameters, thereby greatly decreasing the computational and storage costs. Recent State-of-the-Art PEFT techniques achieve performance comparable to that of full fine...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    smolagents

    smolagents

    Agents write python code to call tools and orchestrate other agents

    This library is the simplest framework out there to build powerful agents. We provide our definition in this page, where you’ll also find tips for when to use them or not (spoilers: you’ll often be better off without agents). smolagents is a lightweight framework for building AI agents using large language models (LLMs). It simplifies the development of AI-driven applications by providing tools to create, train, and deploy language model-based agents.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    ChatFred

    ChatFred

    Alfred workflow using ChatGPT, DALL·E 2 and other models for chatting

    Alfred workflow using ChatGPT, DALL·E 2 and other models for chatting, image generation and more. Access ChatGPT, DALL·E 2, and other OpenAI models. Language models often give wrong information. Verify answers if they are important. Talk with ChatGPT via the cf keyword. Answers will show as Large Type. Alternatively, use the Universal Action, Fallback Search, or Hotkey. To generate text with InstructGPT models and see results in-line, use the cft keyword. ⤓ Install on the Alfred Gallery...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 24
    Notte

    Notte

    Opensource browser using agents

    Notte is an open-source browser framework that enables the development and deployment of web-based AI agents. It introduces a perception layer that transforms web pages into structured, navigable maps described in natural language, allowing agents to interact with the internet more effectively. Notte is designed for building scalable and efficient browser-based AI applications.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    LightRAG

    LightRAG

    "LightRAG: Simple and Fast Retrieval-Augmented Generation"

    LightRAG is a lightweight Retrieval-Augmented Generation (RAG) framework designed for efficient document retrieval and response generation. It is optimized for speed and lower resource consumption, making it ideal for real-time applications.
    Downloads: 3 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.