Showing 83 open source projects for "random"

View related business solutions
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • Nonprofit Budgeting Software Icon
    Nonprofit Budgeting Software

    Martus Solutions provides seamless budgeting, reporting, and forecasting tools that integrate with accounting systems for real-time financial insights

    Martus' collaborative and easy-to-use budgeting and reporting platform will save you hundreds of hours each year. It's designed to make the entire budgeting process easier and create unlimited financial transparency.
    Learn More
  • 1
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    DreamTime

    DreamTime

    Use artificial intelligence to create images

    ...More stable than DeepNude and easy to use thanks to its modern design. Create the body of your dreams, increase or decrease the size of the body parts or leave everything to random. Don't just stay with static photos, you can also create GIFs, MP4 and WEBM videos! Open files or folders from your computer, you can also open files from Instagram and the web. Vitamined with editing tools for any case, you can also make the process fully automatic. Powerful working method that allows you to edit the algorithm step by step and obtain results that only a human could achieve.
    Downloads: 107 This Week
    Last Update:
    See Project
  • 3
    Data augmentation

    Data augmentation

    List of useful data augmentation resources

    ...Keypoints/landmarks Augmentation, usually done with image augmentation (rotation, reflection) or graph augmentation methods (node/edge dropping) Spectrograms/Melspectrograms, usually done with time series data augmentation (jittering, perturbing, warping) or image augmentation (random erasing)
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Pytorch Points 3D

    Pytorch Points 3D

    Pytorch framework for doing deep learning on point clouds

    Torch Points 3D is a framework for developing and testing common deep learning models to solve tasks related to unstructured 3D spatial data i.e. Point Clouds. The framework currently integrates some of the best-published architectures and it integrates the most common public datasets for ease of reproducibility. It heavily relies on Pytorch Geometric and Facebook Hydra library thanks for the great work! We aim to build a tool that can be used for benchmarking SOTA models, while also...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 5
    BNFGen

    BNFGen

    Generates random text based on context-free grammars defined in BNF

    BNFGen generates random text based on context-free grammar. You give it a file with your grammar, defined using BNF-like syntax, it gives you a string that follows that grammar. BNFGen is a CLI tool, an OCaml library. There are also official JS bindings available via NPM. Project goals are to make it easy to write and share grammar and give the user total control of and insight into the generation process.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Awesome Community Detection Research

    Awesome Community Detection Research

    A curated list of community detection research papers

    A collection of community detection papers. A curated list of community detection research papers with implementations. Similar collections about graph classification, classification/regression tree, fraud detection, and gradient boosting papers with implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    PyTorch SimCLR

    PyTorch SimCLR

    PyTorch implementation of SimCLR: A Simple Framework

    ...Aside from a few tricks when performing fine-tuning (if the case), it has been shown (many times) that if training for a new task, models initialized with pre-trained weights tend to learn faster and be more accurate then training from scratch using random initialization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DeepMind Lab

    DeepMind Lab

    A customizable 3D platform for agent-based AI research

    ...The flag is omitted from the examples here for brevity, but it should be used for real training and evaluation where performance matters. DeepMind Lab ships with an example random agent in python/random_agent.py which can be used as a starting point for implementing a learning agent.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    chatbot_chung
    chatbot chung is a keywords based probabilities algorythm simple entertainment chatbot with 3D talking openGL avatars written in freebasic. Can import aiml simple question/answer or question/random/answers or single star/ multi srai data saved from "AIML_chung" open source application . Online html5 javascript version with 44 languages multilingual auto detection available on the website (source included in the zip file). SORT gentext text generation algorythm option added (desktop version) .
    Downloads: 0 This Week
    Last Update:
    See Project
  • Dun and Bradstreet Connect simplifies the complex burden of data management Icon
    Dun and Bradstreet Connect simplifies the complex burden of data management

    Our self-service data management platform enables your organization to gain a complete and accurate view of your accounts and contacts.

    The amount, speed, and types of data created in today’s world can be overwhelming. With D&B Connect, you can instantly benchmark, enrich, and monitor your data against the Dun & Bradstreet Data Cloud to help ensure your systems of record have trusted data to fuel growth.
    Learn More
  • 10
    imgaug

    imgaug

    Image augmentation for machine learning experiments

    imgaug is a library for image augmentation in machine learning experiments. It supports a wide range of augmentation techniques, allows to easily combine these and to execute them in random order or on multiple CPU cores, has a simple yet powerful stochastic interface and can not only augment images but also key points/landmarks, bounding boxes, heatmaps and segmentation maps. Affine transformations, perspective transformations, contrast changes, gaussian noise, dropout of regions, hue/saturation changes, cropping/padding, blurring, etc. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    ...For example, check out this example code for training on the Stanford Natural Language Inference (SNLI) Corpus. Now you've setup your pipeline, you may want to ensure that some functions run deterministically. Wrap any code that's random, with fork_rng and you'll be good to go. Now that you've computed your vocabulary, you may want to make use of pre-trained word vectors to set your embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Oryx

    Oryx

    Lambda architecture on Apache Spark, Apache Kafka for real-time

    Oryx 2 is a realization of the lambda architecture built on Apache Spark and Apache Kafka, but with specialization for real-time large-scale machine learning. It is a framework for building applications but also includes packaged, end-to-end applications for collaborative filtering, classification, regression and clustering. The application is written in Java, using Apache Spark, Hadoop, Tomcat, Kafka, Zookeeper and more. Configuration uses a single Typesafe Config config file, wherein...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    This application allow user to predict dissolution profile of solid dispersion systems based on algorithms like symbolic regression, deep neural networks, random forests or generalized boosted models. Those techniques can be combined to create expert system. Application was created as a part of project K/DSC/004290 subsidy for young researchers from Polish Ministry of Higher Education.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    NNVM

    NNVM

    Open deep learning compiler stack for cpu, gpu

    ...Compilation and minimal runtimes commonly unlock ML workloads on existing hardware. Automatically generate and optimize tensor operators on more backends. Need support for block sparsity, quantization (1,2,4,8 bit integers, posit), random forests/classical ML, memory planning, MISRA-C compatibility, Python prototyping or all of the above? NNVM flexible design enables all of these things and more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Accord.NET Framework

    Accord.NET Framework

    Scientific computing, machine learning and computer vision for .NET

    The Accord.NET Framework provides machine learning, mathematics, statistics, computer vision, computer audition, and several scientific computing related methods and techniques to .NET. The project is compatible with the .NET Framework. NET Standard, .NET Core, and Mono.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Community Detection Modularity Suite

    Community Detection Modularity Suite

    Suite of community detection algorithms based on Modularity

    ... - OpenMP versions of algorithms in [1] are available to download. - Main suite containing three community detection algorithms based on the Modularity measure containing: Geodesic and Random Walk edge Betweenness [1] and Spectral Modularity [2]. Collaborator: Theologos Kotsos. [1] M. Newman & M. Girvan, Physical Review, E 69 (026113), 2004. [2] M. Newman, Physical Review E, 74(3):036104, 2006. [3] B. Ball et al, An efficient and principled method for detecting communities in networks, 2011. The suite is based upon the fast community algorithm implemented by Aaron Clauset <aaron@cs.unm.edu>, Chris Moore, Mark Newman, and the R IGraph library Copyright (C) 2007 Gabor Csardi <csardi@rmki.kfki.hu>. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17

    GA-EoC

    GeneticAlgorithm-based search for Heterogeneous Ensemble Combinations

    ...This is even worst in case of both the high dimensional and class-imbalanced datasets. To overcome the limitations of class-imbalanced data, we split the dataset using a random sub-sampling to balance them. Then, we apply the (alpha,beta)-k feature set method to select a better subset of features and combine their outputs to get a consolidated feature set for classifier training. To enhance classification performances, we propose an ensemble of classifiers that combine the classification outputs of base classifiers using the simplest and largely used majority voting approach. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    JABM is a Java framework for building agent-based simulation models using a discrete-event simulation framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    physicsmata

    API for all possible cellular automata that work same at all angles

    Its strange how the "sorted pointers" normalizing makes just about any random function, as long as it connects the inputs to the outputs on some path, vibrate as some nonlinear shape of wave. This could be used as a game interface for evolvable musical instruments or fluid puzzle games. Physicsmata is similar in effect to SmoothLife but simpler and pure Java. The cellular automata API takes a function to run at each point.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Mario Maker Bot for Twitch

    Mario Maker Bot for Twitch

    Bot collects Super Mario Maker level codes automatically from chat.

    Mario Maker Bot for Twitch collects Super Mario Maker level codes automatically from Twitch chat. It is a helpful tool for streamers who want to play Mario Maker levels made by viewers. Streamer can ask bot to pick one random level from the levels it has collected during the stream. Bot keeps log of levels it has collected and which it has randomly selected. Commands: ---------------- !level = If posted by streamer/master this command tells bot to pick one random level and removes it from the level list. !current = Bot shows which level was picked during last “raffle”.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21

    Unsupervised Random Forest

    On-line Unsupervised Random Forest

    This tool uses Random Forest and PAM to cluster observations and to calculate the dissimilarity between observations. It supports on-line prediction of new observations (no need to retrain); and supports datasets that contain both continuous (e.g. CPU load) and categorical (e.g. VM instance type) features. In particular, we use an unsupervised formulation of the Random Forest algorithm to calculate similarities and provide them as input to a clustering algorithm.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Traditional Malaysian board game. Similar to Mancala. Implement NeuralNetwork (NN) agent, Min-Max, and Random move. System is based on Adam Cofer's Mancala system (2003). Also using Neuroph 2.5b by Zoran Servarac for NN. All code under GPLv3.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    KMeansAniX

    Animation of kmeans clustering using X Window System

    Open source animation of kmeans clustering in X Window System using the C++ libplotter library. Supports Linux, Mac, and BSD. Includes common initialization methods such as Forgy, Macqueen, random, and angular. Sample videos are available through the Files Tab above. The SVN repo is accessible thorugh the Code Tab above. Requires a C++ compiler, libplot-dev, and libncurses5-dev Mac alternative to libplot-dev: macports plotutils +x11
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24

    Darkbot

    The IRC's Talking Robot

    [ Please read https://sourceforge.net/p/darkbot/news/2014/01/darkbots-revitalization/ ] Darkbot is a portable IRC chat robot written in the C language that can be taught responses to user inquiries, and even have conversations with them. Darkbot was originally created by Jason Hamilton as an aid for help channels on Intenet Relay Chat.
    Leader badge
    Downloads: 5 This Week
    Last Update:
    See Project
  • 25

    StabLe

    An algorithm for learning stable graphical models from data

    Stable Graphical Model Learning (StabLe) is an algorithm for learning the structure and parameters of stable graphical (SG) models from data. Stable random variables are motivated by the central limit theorem for densities with (potentially) unbounded variance and can be thought of as natural generalizations of the Gaussian distribution to skewed and heavy-tailed phenomenon. SG models are multi-variate stable distributions that represent Bayesian networks whose edges encode linear dependencies amongst random variables. ...
    Downloads: 0 This Week
    Last Update:
    See Project